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New Approaches to Beamforming, Null Steering and Filtering

Abstract

This final report consists of ten sections. The first is a report describing our abilities in the co-site radio
frequency interference (RFI) problem. The second is the paper Heisenberg Wavelets and the Uncertainty
Principle, which will be expanded upon and submitted to the appropriate technical journal. The third is a
revised version of the paper A Multidimensional Wiener- Wintner Theorem and Spectrum Estimation, which
will appear shortly in the Transactions of the American Mathematical Society. The fourth is the expository
paper Problems on Polynomials with Restricted Coefficients Arising from Questions in Antenna Theory, to
appear shortly in the Proceedings of the 1989 NATO Advanced Study Institute on Fourier Analysis and
its Applications. The fifth is the paper An Ideal Omnidirectional Transmitting Array, and Optimal Peak
Factor Array, for Less Than Half-wavelength Spacing, to be submitted shortly to the IEEE Transactions on
Antennas and Propagation. The sixth is the revised paper Properties on the Unit Circle of Polynomials with
Unimodular Coefficients, which just appeared in the Proceedings of the American Mathematical Society.
The seventh gives an overview of awd, which is our new method of choosing shading coefficients, based on
a convex programming approach. The eighth is the latesL revision of the paper A Specification Language
Approach to Solving Convex Antenna Weight Design Problems, which will be submitted shortly to the
appropriate technical journal. The ninth is version 3.0 of the awd User's Manual, incorporating several
improvements which have beeni added recently. Several specific awd examples which were done for the
Naval UNderwater Systems Center constitute the tenth and final section. The report concludes with the
Appendix, which contains various miscellaneous information.
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Co-site RFI Problem



On Calculating the Effects of Nonlinearities in
Broadband RF Communication Systems

M. J. Barrett, K. S. Miller and Richard Roy
Prometheus Inc.

21 Arnold Avenue
Newport, RI 02840

(401) 849-5389

September 2, 1989

01989 Prometheus Inc.

1 Introduction

This document is to inform the clients of Prometheus Inc. of our interest
and abilities in the co-site radio frequency interference (RFI) problem. This
problem has arisen due largely to the tremendous difficulty and concomitant
lack of experience and practice in the simulation of mutual interference be-
tween transmitters and receivers caused by system nonlinearities. A special
simulation technology has been developed to handle this problem.

Given a particular transceiver (co-sited transmitter and receiver) and set
of transmitter waveforms as well as a mathematical description of nonlinear-
ities present, the simulation technology developed predicts the accumulated
RFI in specified receiver bandwidths. This is obviously useful in the design
of transceivers to minimize RFI due to system nonlinearities. In situations
where the design of the system is fixed and RFI reduction is of importance,
the simulation technology provides estimates of the dominant sources of RFI.
This is valuable information in attempting to arrive at cost effective solutions
to the problem. The actual solutions are, of course, problem dependent and
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cal, incorporate temporal adaptive filtering techniques as well as sensor array
processing techniques that take advantage of spatial diversity of the various
RFI sources.

2 Background

There are many practical applications in which the ability to simultaneously
transmit and receive RF signals using a single antenna system is desirable.
Ideally, though physically co-located, the two functions, transmission and
reception, can be separated in the frequency domain so as to prevent mutual
interference. However, nonlinearities in the output stages of the transmitters
and in the input stages of the receivers, and iionlinear mixing effects in the
platform environment can lead to co-channel interference. These nonlinear
problems are difficult for most engineers to understand and predict, and are
particularly difficult for those engaged in writing EMI specifications.

Co-site interference is associated primarily with several nonlinear effects.
Undesirable nonlinear mixing of signals from different sources can occur in
the skin of the platform and in the front-ends of receivers. Broadband self-
noise associated with switching transients in the frequency synthesizers of
spread-spectrum systems is mixed with itself in the output stages of trans-
mitters, since microwave amplifier output stages can often be quite nonlinear.
These effects cause the received signal-to-interference ratio to deteriorate as
the transmitted signal passes through the output stage. In addition, in-
termodulation products and noisy harmonics generated in nonlinear mixing
from various external sources can appear in the wrong bands, causing further
deterioration of the performance of co-sited systems.

It is generally accepted that the current difficulty in understanding and
coping with co-site interference between transmitters and receivers is partly
due to a lack of simulation models for the calculation/prediction of intermod-
ulation and harmonic interference. In addition to the inherent mathematical
complexity of nonlinear systems, the generation of efficient computer models
for these systems is made even more difficult by the very great bandwidths
and frequency separations involved in EMI between such systems.



3 Predicting Nonlinear Effects

Volterra-Wiener analysis [1] is probably the bc:t-known technique for han-
dling nonlinear system6, although it has not lived up to its promise as a
means of predicting nonlinear effects in communication systems. One of tV
major difficulties is that Volterra transfer functions [VTFs] (or Volterra ker-
nels) for nonlinear amplifiers 'vith memory grow in dimension with the order
of each term in a power series. TI-dt is, tie second-order VTF is a two-
dimensional function (a complex-valued function on a two-dimensional real
frequency domain), the third-order VTF is three-dimensional, etc.. Due to
the exponentially increasing complexity, Volterra series are generaliy trun-
cated at orders of around four or five.

In general, the computational complexity involved in approximating broad-
band nonlinear systems with fading memory by Volterra series is prohibitive.
For memoryless or instantaneous nonlinearities, however, the computational
complexity is greatly reduced. The resulting approximation can be viewed
as a Taylor series expansion of the nonlinearity at the origin. As a conse-
quence, the issue of convergence of the series must be addressed. For example,
non-analytic memoryless nonlinearities do not have Volterra series represen-
tations. The nonlinearities must first be approximated by analytic functions,
adding another degree of complexity and approximation.

The new technique proposed herein involves expansion of the instanta-
neous nonlinearities in a set of polynomials orthogonal with respect to the
complex Gaussian measure. It differs from Volterra expansions most sig-
nificantly in that analytic functions are not required; tabular I/O charac-
teristics of the instantaneous nonlinearities can be handled. When applied
to a single amplifier, the new technique also differs considerably from the
analysis of Fuenzalida et. al. [2], wherein nonlinear amplifier characteris-
tics are expanded in a series of Bessel functions. But it has in common
with that analysis the ability to accurately model both the amplitude mod-
ulation/amplitude modulation [AM/AM] and amplitude modulation/phase
modulation [AM/PM] characteristic curves. In fact, these may be input to
the simulation in equal decibel increments rather than in volts.

The alternative approach developed by Prometheus Inc. is specifically tai-
lored to the RFI and nonlinear amplifier problem. It incorporates engineering
models designed for the purpose of generating intermodulation effects in a
computer representation which is suitable for, and compatible with, existing
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computer simulations of military communication and radar systems. The
simulations can accurately predict the interference effect of one system, or
group of systems, upon another.

The most difficult problem in simulating communication systems is the
sample rate required. For instance, a typical commercial satellite transponder
has a bandwidth of 40 MHz, which requires complex sampling at 20 MHz to
prevent aliasing after down-conversion to baseband. Now consider simulating
a combination of two such transponders separated by 100 MHz. It would be
unthinkable to simulate these systems in the actual combined bandwidths
they occupy, as this would require sample rates in excess of 100 MHz. Where
multiple signal spread-spectrum systems are involved, the overall spread-
spectrum bandwidth of a given system is generally too great to consider
simulating directly. Such systems are usually simulated in the de-spread
baseband bandwidth of one signal, calculating where necessary the effects of
the spreading and de-spreading processes on the other signals involved.

The new simulation technique allows the generation of all of the inter-
mcdulation products that fall into a given band from a group of systems in
several widely spaced frequency bands. The simulations can be carried out
in sample rates appropriate to the transmission bandwidths of each system,
referred to baseband in-phase and quadrature [IP&Q] samples.

4 Example

By way of introduction to the new technique, let us suppose that a metal
fastener, bolt, or rivet on the surface of the communications platform has
become an undesirable RF radiator due to a metallic interface that acts
like a half-wave rectifier. The rectifier causes mixing of signals from two
transmitters, resulting in intermodulation products that fall into the band of
a co-located receiver. An adequate model for the purpose at hand would be to
sum the two signals and pass the sum through an instantaneous nonlinearity,
the actual characteristics of which could be determined experimentally.

For the purposes of computer simulation, adding the two signals together
at RF and performing the indicated operation is not practical because the
bandwidth and associated sample rates are astronomical. It is preferable to
carry out simulations in the baseband bandwidth of each interfering system,
and to generate intermodulation products as they appear in the baseband of
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the system that is being interfered with. Thus, data are required only in the
conventional IP&Q baseband format (compatible with existing simulations
of the systems).

In the hypothetical problem, there are two inputs and one output. The
output band of interest is only a small fraction of the entire bandwidth of
intermodulation products resulting from the nonlinear mixing of the two
signals. Furthermore, the actual carrier frequencies are not present in the
data (since all data is referenced to baseband). Therefore, a means of keeping
track of the sum and difference frequencies between carriers that set up the
entire pattern of intermodulations is required.

The nonlinear computer-aided analysis and simulation technique that was
recently developed [3] for the analysis and simulation of nonlinear effects in
microwave amplifiers satisfies these requirements. Any complex-valued (in-
stantaneous) nonlinear function of a complex input or inputs can be repre-
sented, and the carrier frequencies factored out, so that mixing between two
close, widely spaced, or overlapping radio frequency bands can be done with
complex baseband IP&Q samples. There are no rule-of-thumb approxima-
tions involved, and computations may be carried out to any desired degree
of accuracy. The technique is limited only by the degree of accuracy of the
model of the nonlinearity. It can be readily demonstrated that all microwave
nonlhitcari Lics of iicrest here ,re sufficienILly iushntaneoub Lo satisfy the
fundamental requirement. The technique will produce output for only the
desired band of the system that is being interfered with, without the need
for generating intermodulation products that are outside the bandwidth of
interest.

The new technique is based upon a nonlinear input-output theory de-
veloped by Price [4]. Like the Volterra-Wiener analysis, it was originally
intended for random inputs, but is suitable for deterministic inputs. It uses
expansions of the nonlinear instantaneous transfer characteristics in complex
Hermite polynomials, rather than in a power series in the input like the VTFs
and Wiener G-functionals. A brief discussion of complex Hermite polyno-
mial- is given in the Appendix. Again, the interest here is not in Gaussian
random process inputs, but rather in actual non-Rayleigh envelope signals.
Unlike previous traveling wave tube [TWTA] analyses, there is no attempt
here to determine output statistical properties. The main objective is to
provide a detailed simulation of the actual signals.
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5 Conclusion

The Prometheus team has already successfully applied complex Hermite
polynomial expansions to microwave amplifier saturation characteristics, and
demonstrated excellent curve fitting over the 20dB range of the Rayleigh
decibel density. In that application, actual saturation characteristic curves
were fit with complex Hermite polynomials of orders less than ten. Close
phase shift and gain agreement between the polynomial approximations and
the corresponding actual AM/AM and AM/PM saturation curves were achieved.
The same technique can be used with more general nonlinearities, such as
microwave rectifiers, and will accurately predict the outputs with nothing
other than simple numerical truncation. As much accuracy as desired can be
implemented.

6 Discussion

The capability described in this document provides a computationally fea-
sible means for predicting the effects of various instantaneous nonlinearities
on the performance of co-sited RF communication systems. It is a valuable
tool in the design and analysis of such systems. In the design cFtage, the sus-
ceptibility of the performance of a particular communication system design
to various types of nonlinearities can be predicted. An area for future work
would be the inclusion of this capability into an automated design facility,
where optimum system parameters minimizing performance degradation are
sought.

In the system analysis and debugging phase of communication systcm de-
sign, the tool is capable of predicting, given several nonlinearities, those that
are contributing most prominently to the performance degradation. Conse-
quently, those nonlinearities that should be eliminated first in an attempt
to improve performance can be identified. Similarly, the tool can be used
to identify nonlinearities that are present in a particular physical system in
the experimental phase. Inputs can be designed to isolate certain types of
nonlinearities, and actually applied to the system. The presence of certain
components in the output can then be attributed to the particular nonlin-
earity in question.

Having isolated the potential sources of the performance degradation,
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elimination of the problem can then be addressed. In the situation where an
array of receivers is present and the significant RF[ nonlinearities are point
source radiators, recently developed techniques in the area of sensor array
signal processing can be employed to significantly reduce the effect of the
nonlinearities. The basic idea involves spatially isolating the disturbance
source, and employing a transformation of the sensor array outputs (receiver
inputs) that eliminates the disturbance.

A Mathematical Development

In the simple example described previously, a half-wave rectifier causes mix-
ing of signals from two transmitters, resulting in intermodulation products
that fall into the band of a co-located receiver. The appropriate mathemat-
ical model involves passing the sum of the two signals through an instanta-
neous nonlinearity, the actual characteristics of which could be determined
experimentally.

Z1 + Z2 = Zl
ejw t + Z2ej t  (1)

The tilde represents radio frequency (RF) signals and z, and z2 are the
complex baseband signals. Only the pre-envelope or positive-frequency rep-
resentations of the RF signals are required. The RF signal is now rectified
by an instantaneous nonlinearity:

Y = f(z + z2) (2)

The instantaneous nonlinearity is assumed to be a complex-valued func-
tion, f(z), of a complex variable. For example, an ideal half-wave rectifier is
described by

Re Z> 0 (3)
f() 0, Re : <0

in these representations. Note that the function need not be analvtic.
The basic idea is to expand the nonlinear function in a series of complex

llermite polynomials II,:

f ( Z) _
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Complex Ilermite polynomials appear very infrequently in the literature,
and thus are not weil known, even to mathematicians. They are closely
associated with the complex normal density in the same way that ordinary
Ilerniite polynomials are associated with the normal density. In each case, a
probability density s the weight function of a set of orthogonal polynomials.
The use of the complex Ilermite polynomials versus another suitable set of
orthosonal complex polynomials is somewhat arbitrary in this application,
although they can be shown to have suitable curve-fitting properties for the
problem at hand, as they do for TWTA characteristics.

Noting that the complex }Iermite polynomials are orthogonal polynomials
with a weight function which is a (unit-variance) complex normal probability
density, the coefficients in the expansion may be determined by:

K,,n = c(n,m) J exp(- 1 l)f(/')Hn,.(, (5)

where c(n, m) is a normalizing factor, and it is understood that the differential
elements are the real and imaginary parts of z rather than the complex
variable itself. The integral is actually a two dimensional integral in real
variables.

The complex Hermite polynomials form a pyramid of the type as indi-
cated in Figure 1 with those along the outside border of the pyramid of the

1

-22

-33

Figure 1: Pyramid of Complex Hermite Polynomials

form ,q or z. The internal polynomials lead with the term z'F " which

is indicated by that particular polynomial's position on the pyramid. Every
term of a particular polynomial will retain the difference between the num-
ber of powers of z and z* that the leading term has. The expansion of an
amplitude sensitive nonlinearity, like the TWTA, uses only those polynomi-

als along the diaqonal for which there is one more power of z than of z*.
This occurs because a purely amplitude sensitive nonlinearity does not gen-
erate harmonics [5], but only intermodulations in or near the original band
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of transmission. The half-wave rectificr, on the other hand, has a general
expansion using terms from all of the diagonals.

The carrier frequencies can now be factored-out, and the output can be
obtained in only a desired band. In any particular Hermite polynomial, the
difference between the number of powers of z and of its complex conjugate
z* is fixed. Using (1), (2), and the binomial theorem:

H,,.(., F) E coeff. x (zied "'w + z 2e"'2)'(z;e- j t + z~e-jw2t)m (6)
X

- coeff. Xy (fl)(zieIwt )P(z 2eiw02t)n-P (7)

P=O

X (qn (e-w t )q (z~e-j-2t )m-q (8)

The carrier frequencies w1 and w2 can be factored-out with their various
multiplicities, leaving only the baseband signals z, and z2 , with their inter-
modulations, for the numerical simulation to contend with. But, by keeping
track of the carrier frequencies as a side problem, it is readily evident where
the intermodulations belong in the frequency spectrum. A particular term
would be, for instance, of the form:

p n-p *,Zq e ~ [(W
z~z2 -z 1 z 2 m - exp[j t[(pw+ (n - p)w 2 - qw, - (m - q)w 2 ]] (9)

The sums and differences of the carrier frequencies may be accounted for,
and the frequency of the intermodulation band specified. Only the desired
band of intermodulation products need be simulated. The corresponding
coefficients in the complex Hermite polynomial expansion may be determined
in advance of the simulation.
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Heisenberg wavelets and the uncertainty principle
John J. Benedctto*

Prometheus Inc.

For the past few years the term "wavelet" has indicated a function 7k E L2(R) for which the
set {V'mn} of dilations and translations, associated with the affine group, is an orthonormal
basis of L2(R?). In light of the theory of wavepackets and the sustained interest in Weyl-
Heisenberg decompositions because of the importance of frequency localizaton, we refer to
both "affine wavelets" 0 and "Heisenberg wavelets" 0 E L2 ( R), where

km,n(t) = e2 rimbtO(t - na) (1)

for fixed a, b > 0. The term "Heisenberg" is used because of the underlying importance of
the Heisenberg group in analyzing (1). Elementary properties of { m,,} and {0m,n} are
given in [Ben89, HW89]. This note concerns Heisenberg wavelets.

The construction of Heisenberg wavelets is a traditional goal in signal processing, e.g.,
Gabor's classical paper [Gab46]. The idea originated in quantum mechanics where "over
complete" sets (coherent states) are associated to objects such as the Weyl-Heisenberg group
or the von Neumann lattice. Related devices include the Wigner distribution (1932) and the
ambiguity function. The Wigner distribution became a tool in signal analysis in the 1940's
(by Ville) and presently plays an important role in a host of electrical engineering problems
[CM80]. The ambiguity function is a staple in optics and high resolution radar.

1 The uncertainty principle inequality.

The uncertainty principle inequality is

2ll < 47rll(t - to)f(t)[121(-y - -tO)f(-Y)112. (1.1)

The Fourier transform f is defined as

f(Y)= f t)e2w7 dt,

where t E R, -y E k (=R), and integration is over R. Our notation is standard, e.g., [SW71],
and (1.1) is the simplest of a whole class of uncertainty principle inequalities, e.g., [Ben90].

There is equality in (1.1) in the case f is the Gaussian. Because of this, one of Gabor's
ideas from [Gab46] was to write discrete expansions of L2 (R) elements in terms of {m,n},
where 0 is the Gaussian. This part of his program is subject to some scrutiny because of the
Balian-Low theorem: If {m,} is a frame for 0 E L 2(3) and ab = 1 then either tO(t) V L2(W)
or -(-y) V L2(R) [BHWJ.

* The author is also Professor of Mathematics at the University of Maryland, College Park,

MD 20742.
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2 Weak uncertainty.

Given V, E L2(3?) for which 1 L42 1. It is well known and easy to verify that

1(1 - tm ,n)0.,(t)jj1jj(7  - 7Yin)0nmn(-Y)jI = 11(t - to,0)0(t)jj2 jj(-Y - -ytl)'(y)I- (2.1)

where the expected values (tm,nymn) are

tm,n = It I/ ,n(t)12dt and 7m,n = J1dm,n()2d7 ,

e.g., [Ben90].
An analogous result is true for Heisenberg wavelets-

Proposition 2.1. Given 0 E L2(3) for which 11I112 = 1 and let ab = 1. Assume that
E L 2 and

I t q(t)12 dt, J ,1,()12 d7 E R.

Define the variances t22
A-,. = II(t - tm,,.)4m,.(t)112 and

- 2
AM,. 2 1 -".,)m.'~l

Then

O < At 2 Ay2 (I /j~t1 )r2 ) /111(,)2- -f y12t2

3 Strong uncertainty and complex analysis.

Proposition 2.1 allows us to conclude that
2

SUP mxm,nAPfn,n < 00.

On the other hand, if the expected values (tin,,, 7m,n,) are replaced by a fixed pair (to, yo),
then it is easy to see that we have the "strong" uncertainty property,

Sup I1(t - t0)0m,n(t)I 2jj( 7 - 70)dm,n(-Y)112 = 00. (3.1)
m,n

The terminology, "weak" and "strong" uncertainty, is discussed in [Ben90] but is not essential
to our discussion here. (In fact, at the risk of making an apparently confusing remark, (3.1)
is really a weak form of strong uncertainty since it is valid only because of translation from
the origin, not because of internal changes within each O!m,,.)

In this section we propose to give a complicated proof of (3.1) for dealing with refinements
of (3.1) in which the sup is replaced with various paths in Z x Z.

Lemma 3.1. Suppose f is analytic in the tube ? x (0, b), f has nontangential limits a.e. on
R, and f = 0 on K C R for which IKI > 0. Then f is the zero function.

In this generality, D. Hamilton has pointed out that topological arguments la Privalov's
theorem can be used in the proof. Alternatively, one could proceed in the usual way by
Jensen's theorem after setting up the following mapping. Choose C C K, ICl > 0, such that
lf(z)l _< A on UT-, - E F, where T-, _ Rx [0, b) is a triangle and T,\ {-Y} Rx (0, b). For an
appropriate set B D U T7 choose a bi-absolutely continuous map from B onto the unit disc;
and then apply the Jensen's theorem argument found in the books of Koosis (pp. 76-77),
Levinson (p. 74), or Porcelli (p. 60).
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Lemma 3.2. Suppose F E L2(j) \ {0} and supp F is contained in a half-line. Then
F' =f E H2(W) \ {0} and, in particular, f is an analytic function with R as a boundary.

Lemma 3.2 is the easy direction of the Paley-Wiener theorem, and also ties in with the
work of F. and M. Riesz, Levinson, and Beurling and Malliavin. In light of Lemma 3.2 and
the following application, we note that we are only using Lemma 3.1 in the case f E H2(w).

Using Lcmmas 3.1 and 3.2, our complicated proof of (3.1) proceeds as follows. We first
write

v(m, n) 2(t 2t0 )mn(t)II~jI(y - 2

= J j(u - to + na)O(u) 12 du J I(A - -o + mb)4(A)12 dA.

For case 1, suppose supp 0 is not contained in a half-line so that for all n > 0
v(m,n) > (na)2j oi4(u)12 du Ji(A -yo +1mb)2()IdA.

Thus,
Yi, lirn v(m, n) = oo.

For case 2, suppose supp 4 is contained in a half-line. Then for all m > 0,

v(m, n) ! (mb)2J I(u - to + na)4(u)2 duj kN1 A)12 dA.

By Lemmas 3.1 and 3.2, fy'o I)(A)12 dA > 0 and so

'V, lm. v(m, n) = oo.

3.3 Remark.

(2.1), (3.1), and Proposition 2.1 can be compared with Bourgain's weak uncertainty in-
equality [Bou88], cf. [Ben90, section 4]. Bourgain's orthonormal basis was constructed by
perturbations of Heisenberg wavelets.

4 The Balian conjecture.

The Balian-Low theorem, mentioned in Section 1, was first stated by Balian [Bal8l] in
1981. At the same time he posed the following conjecture: there are no orthonormal bases

{0k} _ L 2 (R) with the property

supAt < o o  and sup AN <00,
k k

where
At = (Ok(t),t 2Ok(t)) - (Ok(t),tOk(t)) and

A~,= (0k(y), 720k(7)) - (Ok(7), 70k(7)),

cf. Proposition 2.1.
The proof of (2.1) shows the validity of the conjecture for affine wavelets, and the Balian-

Low theorem confirms the conjecture for Heisenberg wavelets. Bourgain's theorem casts some
doubt on the conjecture, cf. [DJJ].
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A MULTIDIMENSIONAL WIENER-WINTNER THEOREM AND SPECTRUM ESTIMATION

John J. Benedetto

Prometheus Inc.

Abstract

Sufficient conditions are given for a bounded positive measure p on

Sd to be the power spectrum of a function q'. Applications to spectrum

estimation are made for the cases in which a signal q is known or its

autocorrelation P is known. In the first case, it is shown that

1 1 2( )I~f~)~dIR() JB(n J If'q(t)I2dt'
R 00 B(R)

where P = P (, B(R) is the d-dimensional ball of radius R, and f ranges

through a prescribed function space. In the second case, an example, which

is a variant of the Tomas-Stein restriction theorem, is

Vf e Ll(Rd)p(d), t If(6)12dgd l(0) 1/2 < RII( d 2ll t 2 Iifll + fllp,

d-1

where 1 : p < 2d/(d+1) and th power spectrum pd-1 is the compactly

supported restriction of surface measure to the unit sphere Zd 1  d

The author Is also Professor of Mathematics at the University of
Maryland, College Park. Research sponsored by the Air Force Office of
Scientific Research (AFSC), uncer Contract F49620-88-C-0028. The United
States government is authorized to reproduce and distribute reprints for
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1. Introduction

Wiener's generalized harmonic analysis is a multi-faceted subject. It

was conceived to deal with noise, hidden periodicities, and turbulence; it

was developed in terms of Tauberian theorems and sophisticated spectral

analysis; and it continues to play a role in prediction theory, ergodic

theory, stochastic processes, and, of course, harmonic analysis [B;W]. An

important fact from the general theory is a theorem due to Wiener and Wintner

[WW,241-242]: each bounded positive measure p on the real-line is the

Fourier transform of a function P which can be written in the form,

(1.1) P(t) = lim 1 1R(t+u)(u)du,
R - 2 -R

i.e., each p is the power spectrum of some signal ( having autocorrela-

tion P. In Section 3 we extend this result to functions V on d-dimensional

euclidean space R d; and we use the theorem as background for proving a

d-dimensional type of Wiener-Plancherel formula in Secticn S and a weighted

Fourier transform norm inequality and restriction theorem in Section 6. The

results in Sections 5 and 6 are viewed in terms of estimating the power

spectrum, i.e., "spectrum estimation".

Section 2 is devoted to notation. Theorem 3.3 (in Section 3) is the

d-dimensional version of Wiener and Wintner's theorem. It should be pointed

Rd
out that their proof is cryptic, and our proof on R is inspired by the

intricate argument of Bertrandias for R [Be], cf., [Ba, Chapitre 2].

Section 4 provides a geometrical application of Theorem 3.3 for Wd-l' the

restriction of surface measure 'd-1 to the unit sphere Zd_ 1 of

d-dimensional euclidean space Rd(=d).

In Theorem 5.2 (of Section 5) we derive a formula to express

If(U)I'dp (C() in terms of arithmetic means involving f and a given
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function p. (Integration is over A and p is a bounded positive
Ad,

measure on A which is the Fourier transform of a d-dimensional version of

the function P in (1.1); the function f denotes the Fourier transform

( ,f) = (t)e-2nit'ydt, where integration is over R and 7 E Ad.) Using

Theorem 5.2 with functions f having the appropriate shape, we can estimate

the mass of p on prescribed regions of d in terms of the known

functions f and p. This is a form of spectrum estimation and further

remarks are made in Section 5.

The results in Section 6 are elementary but of some interest because of

recent work on weighted norm inequalities and restriction theorems. The

2p
(L Lp ) restriction theorem of Tomas and Stein asserts that

(1.2) Vf E LI(ORd )nLP(R d), [J:d- f(0)1 cd 1 (0l ) ) / SC(p) 11f l p

Zd- I1

for any fixed 1 5 p 2(d+1)/(d+3), e.g., [T]. LP(Rd) and Ilfifp are the

usual Lebesgue space and norm. Discussions of the role of curvature and

extensions of (1.2) to other smooth sub-manifolds are found in [CD, 103-109;

S, 325-329]. Weighted Lp  versions of (1.2) are found in [BHI. Proposi-

tion 6.1 is a p-weighted Fourier transform norm inequality with explicit norm

constant in terms of the inverse Fourier transform P of p; and Proposition

6.2 is a corollary which can be viewed as a restriction result since we take

= Pd-1 The inequality (1.2) is deep and Proposition 6.2 is elementary.

In (1.2) the constant c(p) is not explicit, p = 2(d+1)/(d+3) is largest

possible, and the right hand norm is JIflj . In Proposition 6.2 the constant

is explicit and the values of p extend beyond 2(d+l)/(d+3), but the right

hand norm is 1f~l 1 + filip. As far as spectrum estimation is concerned,

Proposition 6.2 can be used to give an upper bound of the mass of pd-1 on

prescribed regions of Rd in terms of the known functions f and P. This,
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too, is a form of spectrum estimation and further remarks are made in

Section 6. Naturally, in light of Theorem 3.3 and the generality of

Proposition 6.1, our discussion of Vd-1 extends to many other measures.

Acknowledgement

I would like to acknowledge important observations about the contents of

this paper by Sadahiro Saeki, David Walnut, and Elmar Winkelnkemper, as well

as an overall discussion with Ward Evans, Tom Harrison, Christopher Heil, and

Rodney Kerby.

2. Notation

Besides the LP-spaces, 1 : p < c, mentioned in Section 1, we shall

deal with a number of other spaces. To introduce them we let R (= R ) be

the dual group of d-dimensional euclidean space Rd and let X be a locally

compact subspace of id. Then C (X) is the vector space of complex-valued
c

continuous functions f X --- C having compact support supp f 9 X. A

measure p on X is a linear functional defined on C (X) satisfyingc

lim <P,f.> = 0 for every sequence {fj} ; C CX) having the properties that
j j j c

lim If .11C 0 and supp f. 9 K, where K 9 X is a compact set independent

j90 J

of j and ji'j' C is the usual sup norm, e.g., [Bo]. M(X) is the space of

measures on X and M +X) = E M(X) : <p,f> 0 for all non-negative+

f E C (X)} is the space of positive measures on X. Similarly, Mb(X) isc

the subspace of M(X) having bounded variation, i.e., the above mentioned

convergence criterion on C cX) is replaced by (CCX), 11".. .. ); andC

Mb+ X) consists of the positivP elements of Mb X). The support of

E M(X) is denoted by supp p. We write <p,f> = f f()dp(T) and in the

1 -
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case X = R we write <i,f> = f(j)dp(z). If P E Mb(M then p is well

defined on C b(X) = {f : f is continuous and bouided on X}.

For p E (0,w), Lp (d) is the set of functions f : -) C for
oc

which Ifi p  is locally integrable with respect to Lebesgue measure. If

E M +(d) then L A R designates the set of Borel measurable functions
+d

f defined p a.e. on R for which Ilflp.P = (fif(7)jpdpW))"p < Co

There is the standard adjustment for p = c. Also, we write p' = p/(p-1).

The Fourier transform defined in Section 1 extends from LI (R ) to

d)
Nb (R) (and beyond), and A is the inverse Fourier transform of

,-d

The characteristic function of the set S 9 Rd is XS and the

Lebesgue measure of S is denoted by JSi. We set B(R) = { x E Rd

lxi : R} so that IB(R)I = wd- R d /d where wd-1 = 2 d/2/(dF(d/2)) is the

surface area of Z d-1 Finally, we mention that we shall frequently deal

with sets of the form B(R)\B(r), and that the boundaries of such sets are

unimportant for our results. As such, on this point, we shall not usually be

concerned about boundaries of such sets in our calculations.

3. The Wiener-Wintner Theorem on Rd

Given P E M+( d) and let 6 be the Dirac measure supported by {cw.

It is well-known that there is a sequence {pn} ) Mb+(supp P) of positive

discrete measures,

N

n aj, 6W , a. > 0,

such that {j,n j = 1,-.-,N } supp p for each n,
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(3.1) lim <Pn,> 1>
n-o

nd -dc

and lim pn = P Id the (vague) topology (M b(R), C (Rd)), e.g., [Bo,

Chapitre III, Section 2, no. 4]. Actually, (3.1) and the -(M b(R ), C c ())

convergence allow us to conclude that lim pn = p in the "Levy" topology

0(M ), Cb( R)), e.g., [Ma, 91-931.

For a given p E 4b+( d) and sequence {p n} M b+(supp p) as above, we

define

N
n1/2 2nit-w.

n(t) .1/2~

n z j,n
j=1

so that

N
n

1/2 1/2
ii 5 < a1/12 < Nn sup a1.'2-/. J,n n 3N ,n

j=l l<-j:N n

Lemma 3.1. For each n,

(3.2) 1Am 1 R n(t+x)(n(x)dx = Pn(t),
BmCR)(~ln nR- +00 ) B(R)

d
uniformly on IR

Proof. The left hand side of (3.2) is pn(t) + lim c(R,t,n) (if this limit

exists), where

c(R,t n) - 1 a 1a/2 a1/2 e27rit' J,ne nx(jnok d
IB(R)I Z/2 j,n akrn2 d

j~k (R)

2nitw. d-2 f d
27z a 1/2 a1/ 2 e n. n-k I r2 J 22 JrlWn ndr
I Z j,n k,n j,n k,n d-2 j , k~n

j~k 2
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and Jd-2 is the Bessel function of order (d-2)/2. Since IJ d2(s)l : 1
2 2

(at the origin) and J d2(s) = O(s 1/2), s-xo, we see that lrn cCRtn) = 0
2 R-

independently of t.

g.e.d.

We shall also need the following easy fact.

Lemma 3.2. Given a sequence {R } increasing to infinity and P e L o d ( .
n loc

d
Fix t e R Then for each fixed p,

lI() J (t+x)9P(x)dx = 0.Rm T1B (R) I
R too ' (R )

p

We use Lemma 3.1 to define a specific sequence {R n and a specific

function T in the following way. From the uniform convergence we know that

Vn 1, 3A n A such that Vt E Rd and VR > AnVnZI3n _ n-i n

(3.3)

IB(R) I n(t+x) n(x)dx - IInt) <

CR) 2n+l

We set Rn = (A +i)A 2+2) .(A n+n) so that each Rn n! and the sequences

{R n }, {R n+/R n} {A n+l+n+l}, and {R n+l-R} = {(A 1+1) (A n+n)(A n+l+n)}

increase to infinity. For this sequence {R } and for {fn} defined above

Rd
we define (p on R by setting W(t) = pn(t) for R n<tl < R n 1,n n+i' -'

and letting V(t) 0 for Itl < R1. Clearly, E Lc d ) and the values

of q(Pt) for Itl = r are not important.n

Using this notation, setup, and the lemmas, we can state the Wiener-

Wintner construction on Rd
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Theorem 3.3. Given P E M+(&d ) with corresponding functions {'n} and

V E Lco (IR d Assume
Sloc

n

(3.4) liam max(Ilp 1100 , IIr . )max(IIq( 1.0, IIhp 11 ) = 0.
n-c j=2

d
Then, for each t E R

(3.5) lim 1 [ (tx)p(x)dx = tR IB(R)I Ij otx'xdx= t.
B(R)

Proof. a. Given t r Rd  and c > 0. Because of our setup we can choose

P1 
= P(t) for which Rk+ 1 - Itl > Rk + Itl for all k ? p, and we can

choose p2 = P2 (
C 't) > p1 such that

(3.6) Vk Z p2, p-k(t) - gI(t)I < C.

We shall find p = p(c,t) > p2 such that for all sufficiently large R,

(3.7) IB(R)I {(t+x)q(x)dx - gi(t) < 14c;

B(R)\B(R)
p

and, hence, (3.5) is a consequence of Lemma 3.2 and a "lim" argument.

b. For each p > p2 and each R > R , writeP

n-1
IB(R) J (t+x) -M)dx = (b(k,R) + c(k,R))

B(R)\B(R ) k=p
(3.8)p

+ 1 V(t+x)p(x)dx,IB(R) I
\B(R"B(R

n

where
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b(k, R) = )I q(t+x)(px)dx,
BBRjJ(Rk+I-I tlI)\B(Rk)

c(k,R) IB(R)I (t+x)(x)dx,
1( j B(Rk+,

) \ B ( R k + , - 1 t i )

and n = n(R) is the largest integer n for which R n R.n

In part c we shall verify that for p > p1

n-i

(3.9) lim z c(k,R) = 0.
k=p

Parts d - h are devoted to showing that there are p3 = P3 (c
' t) > p2 and

R(c,t) > p3  such that, for R(c,t) > p -> p3'

n-1

VR > R(c,t), z b(k,R)

k=p
(3.10)

n-i

= j'(t) IB1R)I (IB(R Kij-tI)I - IBCRk)I) + r(p,R,t),

k=p

where Ir(p,R,t)l < 7c + 1 Parts i - k contain the proof that2 p - 1 "

(3.11)
= -" BCRn) + (~)

VR > R(c,t), IBCR)I (t+x) (x)dx = P'(t)(1 - IB(R) I ) + sR,t),
B(R)\B(R)

n

1
where Is(R,t)j < 4c + -. (3.7) is obtained in part I by combining (3.9),

(3.10), and (3.11).

c. If x E B(Rk+1)\B(Rk + - Iti) then Rk : lx+tl R k 2. Thus,

setting ck = IIk I max(Vk 1lq] , 1k+110 ), we have
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n-1 n-I

Z c (kR) - 1-d C k[k+l - (Rk+1-It)d]

k=p k=p

n-i

c +[ - Itl d]
n k=p

n-1 d

-+ :[)(t Ij J
n k=p j=l

n-1 n-1

YR Jk In ! C k .

k=p k=1

(3.9) follows by comparing the right hand side of this estimate with our

hypothesis (3.4).

d. In order to estimate b(k,R) we define the sets

Ak(t) = {x e B(Rk+l-Itl)\B(Rk) : t + x E B(R k+I)\B(R K)} and Ak-1 (t) =

{x e B(Rk+I-ItI)\B(Rk) : t + x e B(Rk)\B(RkI)}. Then, for k > pl'

B(Rk+ 1-ltl)\B(Rk } = Ak(t) v A kl(t) a disjoint union; and we have
kIRI A

b(k,R) 1 V k(t+x)4 k(x)dx
kACt)uB(Rk

(3.12) 
k Bk)

! 1

IB(R)I { Vk(t+x) k(x)dx + IB(R) (t) k-(t+x)k (x )dx "

BCRk) ~Akl 1t

We shall estimate these three integrals. The first two will involve the

factor pV(t) and the latter becomes small by the size of A k-(t).

In the process of making these estimates we need the bound,

n

(3.13) 1 Rd < 2.

Rd k
n k=l
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In fact, the left hand side of (3.13) is bounded by

1+ 1 + 1 + --1

n n(n-l) n '

and it is easy to see that for each k 3

k+l k

1 j! < 1 j! :55
(k+l)! J! F X 3'

j=0 j=O

hence, (3.13) is valid.

e. Our initial step in estimating the first integral on the right hand

side of (3.12) is to prove that there is p3 = P3
(C 't) > P2 such that for

all k > p3'

(3.14)

(P (t+x);i (X'dx - 0(t~x) k(XW dx < C.

iB(Rk+l-ltl)l IB(R+lt itl) kt k 'Ak(t)UB(Rk) ] k.

The difference of the two integrals is the integral over A kl(t), and if

x e Ak-l(t) then Rk : W : Rk + ItI. Thus, setting dk = 1I(pk [, the left

hand side of (3.14) is bounded by

d _ d dd k-(3.15) tj)d [(Rk+ltld _ _(Rk+< t d (Rk + l t l ) d -

(3.15) k<II -

where this last inequality is a consequence of the mean value theorem. By

(3.4), the right hand side of (3.15) tends to 0 as k -- m; and (3.14) is

obtained.

By means of (3.3), (3.6), (3.14), and the triangle inequality we have

1 _ F 1
(3.16) 1B(k-t)j P k(t+x)k(x)dx - p'(t) < 2c + ,j( lltI Ak (t)vB(R k) k k2 k + l '

where k p3. Clearly, we can write (3.16) in the form,
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(3.17) 1 [i (t+x)q (x)dx = pi(t) + R (t)(2c + I

Sk+ 1- A kt)uB() 2

where I k(t) < 1 and k p3.

f. To estimate the second integral on the right hand side of (3.12) we

use (3.3), (3.6), and the triangle inequality to write

(3.18) 1 k (t+x)qk(X)dx - V (t) < c + 1--1

B(Rk) JB( k k k1 2kl
B(Rk)

for k > p2. Ana]ngous to part e, (3.18) yields

(3.19) IB1)k(t+x) (x )dx =  't + zk(t)(c +
B(Rk)

where Ik(t)I < 1 and k > 2"

g. Since Ak-I(t) B(Rk+Itl)\B(Rk), the third integral on the right

hand side of (3.12) is bounded by

(320 11(k 1 10hkic -(kll~ ]
(3.20) IB(R)I Ik-l(t+x)(k(x)ldx R d  - "

JAkl (t) n

h. By parts e, f, and g we can write

n-i n-i

b(k,R) = £ IB(R -ItI)I(P(t) + Rk(t)(2c +--
IB(R)l ) k+1 2 k+1

k=p k=p

n-i
(3 2 )- 1 (IB( 1 )

(3.21) ( R) '5 (IBR)I)(P (t) + lk(t)(c + 2k+

k=p

n-l

+ IB(R)I k- (t+x)Ok(x)dx.
k=p Akl(t)
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To estimate the last term in (3.21) we use (3.20) and compute

n-i1 1 P[(R + t  _d - R )

n k=p

n-I
<5 dlt[ R H k 1 [ kl ( + tld-1

R dX k-i 0 kw 00 K1
n k=p

SdJt2 d - 1 n-i R k d-l-< R X 1 k- ![[11011(pk 110 ( f "

n k=p n

By (3.4), this term is less than c for all large R. Consequently, (3.21)

allows us to obtain (3.10). It is at this point that we invoke (3.13).

i. We now estimate the last term in (3.8). Analogous to part d we

define the sets AR, t) = {x e B(R)\B(R n ) : t + x E B(R+I)\B(Rk)} for

k = n -1, n, n + 1. Then, for n > pit B(R)\B(Rn) =

A R,n_1(t)uA R, (t)uA R,n+l(t), a disjoint union. (Actually, we have

n : p3.) Therefore, the last term of (3.8) is

1I f(t+x)v(x)dx = 1 J nt+X)9PnCx)dx
B(R)\B(R n) A R,n(t)uB(Rn n

IB(R )I F 1C+Cd
(3.22) IB(R)J [IB(Rn)I J n(t+X)n (x)dx

n B(R
n

+ V n(t+x)v (x)dx + (nClt+X) n (x)dx

SR,n-i M n A R, n+lMt)

j. The last term of (3.22) is estimated as in part g. The inclusions

A R,(t) 9 B(Rn +[t)\B(Rn ) and A R,n+ l t) B(R)\B(R n+-It) are valid,

but it should be observed that A R,n+l(t) can be the empty set, e.g., if
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R < Rn+ 1 - ItI. In any case, this last term of (3.22) is dominated by
n1 {[_R ) ]n ii, i R ]

(3.23) ! .{~nlcxnw [(R +ItI)d - Rd)] + 1 [ Rd - (Rn-lIt1)d]},

where "[Rd - (R -ItI)d]., is defined to be 0 if R < R n+ It. Usingnnl

the mean value theorem again, (3.23) is bounded by

diti R +It[ d-l d(R-(R n+1-Iti))

R n  .1 1 R R 1n+l1 no

Our hypothesis (3.4) allows us to conclude that this quantity is less than c

for all large R. (For the second term, recall that R < R n+l.)

k. Our estimation of the first two integrals on the right hand side of

(3.22) follows steps e and f. For example, analogous to (3.14), we have

- IV(t+x)qPn(x)dx - 1P (t+x)V (xWdx

IB(R)I CB(R) A R, (t)uB(R n n 3
IB(R)I 0n 1 AR n-(t) +IAR, n+I~t~l J

and the right hand side is less than c for all large R by the calculation

used in step j. Proceeding in this way, as in parts e and f, we obtain

1B(R)I Vn(t+x)qPn(x)dx = V (t) + Rn(t)(2c + I)
1 'AR,n (t)uB(Rn ) 21

and

'B1R)' [ ( = Pi(t) + 7 (t)(C + 1
n B(R) 2n+l

n

where 1 RWn(t)I, IRn(t)I < 1. Combining these facts with part d and

(3.22), we have ver-ified (3.11).
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1. For p p3  large enough and for all large R, n(R) > p, the right

hand side of (3.8) is

n-1

(3.24) B(t' [ j IB(Rk ,Iti)i - IB(Rk)I - IB(Rn) I

k=p

plus an error term bounded by 13c. This is a consequence of (3.9), (3.10),

and (3.11). We rewrite the second term of (3.24) as

it) IB(Rn)I - B(Rn-ItI)I + IB(Rn1)I _ IB(Rn 1 _ItI)I

B(IRB(R )1 - IB(R, 1 -Itl I] + IB(R)I],

which, in absolute value, is bounded by

n n-1

' (t) [ ( - (Rk-lt1)d + R - tI R P-1 + I (RCt)l

k=p k=p

and which, in turn, is less than c for all large R. Thus (3.7) is veri-

fied, and, by the observation in part a, the theorem is proved.

g.e. d.

Remark 3.4. The hypothesis (3.4) can be weakened. For instance, V 1k2 < CR
k o t

is sufficient. There is also left unanswered the problems of constructing q

for arbitrary p, e Mb( R) and for characterizing those p' for which

E L (R d). The former problem is answered positively for all p in case

d = 1; the latter is not yet solved in case d = 1.
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4. Example

Let gdl( = ()- 1) r Mb+(( ) be the measure corresponding to a

mass distributed homogeneously over Zd-1; the total mass is taken as Wd-1

so that the compactly supported measure pd-1 is the restriction of surface

measure 'd-l to z The transform pdl t) is easily computed in terms

of the approximants 1 X( 17-__) to W where x(r) = C[_1/2,1/2)(r) for

r E R. In fact, we have

Ldl t = 1 X(111(1) e d7

(4.1)

imJ 1 P e da d O) dp

-4 
d-l

2

-d-2

=21TItl 2 1d-2 (2Trltl),
2

since e2nit 'pO dod-l(O) = 2n ItIp) Jd 2(2ndtjp).J- 2

Theorem 4.1. Given d 2 and the measure pd1" There is 2 E Lo2 ( d )

such that

Vt E R d, N B j (t+x)(x)dx = pl(t).R'm f1B(R) 1 -
R #00B ( R )

Proof. The result will follow from Theorem 3.3 once we construct {(p} and

(p{. as in Section 3 where {qn} satisfies (3.4).
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To this end we first cover Z d- in the following way. For each n we

d-l d-l
choose about n balls Bj, n , j = 1,-.-,N n < Nd n , each having

diameter bounded by D d/n and whose union covers Z d-l For d = 2, this is

doable since the circle can be divided into n arcs of equal length 2n/n,

and, hence, n balls of diameter D 2/n can be chosen. For d = 3, we first

consider the equator and the polar great circle. We choose n equi-spaced

points on both circles. For convenience let n be even so that the polar

points are marked on the polar great circle. Then spin the polar great

circle stopping at each marked point on the equator. At each stop we mark

points on Z2 determined by the rotated points of the polar great circle.

n N3n2 points on Z2* For any marked point p on

the equator we choose a ball B(p,r) where the radius r is large enough to

include two marked points of the equator on either side of p. Balls of this

size centered at the other marked points on 72 yield the desired set

{B j,n} (since B(p,r) covers the largest area on Z2 between a block of 6

neighboring points). For d > 3 we use this process by considering d - I

d- 1
"great circles" Zd 2 to find the n points and isometric balls BJ, n

centered at these points. Analytically, this can be accomplished by

imbedding Zd- in the unit cube, covering the surface of the unit cube by

2 dn d -  balls of diameter Dd/n (equidistributed on each face of the cube),

and linearly sliding each ball to the origin where it is designated B.j, n

when its center intersects d .l' Clearly (geometrically), these B.

cover Zd- I.

We can now construct {in}. For each fixed n we set B j,n(Zd) =

Bj,nrd-l' j = 1, ... ,N n; we then obtain a partition of Zd-1 by defining

O1,n = B1,n (Zd-l ) and
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j-1

0J n =B. j,n(d ) k,n (zd-l)] j 2,. Nn
k=1

There is K., independent of n and j = 1,-.- N such thatd n'

Kd

(4 .2 ) I d 1 (O , ) d
d-l ~n nd-l*n

Besides the geometric proof of (4.2) we can proceed analytically as follows.

Take g = XB ,Z d i ) and define gd on IRd by setting gd(O) = 0,
j,nd-

gd(pO) = g(8) for 0 < p : 1 and 0 e Zd-1' and gd(7) = 0 for 171 > 1.

By the definition of pd-l'

(4.3) jz g(e)do-d_l() = Jd ()d-;

d- 1

and (4.2) is obtained by calculating the right hand side of (4.3) using

spherical coordinates.

Now that we have a partition 4OJ, n : j = 1,..,N <N n } of Zd-1

satisfying (4.2) and having diameters bounded by Dd/n, we choose

W E 0. (when 0. 0) and definen Oj,n j,n

N
n

n z P d-l(0j,n) ) W.
j=l jn n

and

Nn 2it-w.

(t) z d-l(Oj,n )
1/2 e j,n

j=l

It remains to prove that lim pn = p in the Levy topology (so that we have
n--c

(3.6)) and that (3.4) is satisfied.
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The proof that lim pn = p in the Levy topology, i.e., o(,(d), Cb(Rd)
n-+c

proceeds as follows. Given g E Cb(Pd); since g is uniformly continuous

on Yd- 1 there is {r n } decreasing to 0 so that if 0.0' E Zd- 1 have

Euclidean distance less than D d/n then Ig(O) - g(O')l < r . Therefore,

for each j,

Fz d (e)gCO)da-1() = g(" [- (e)dad-1(O)
S j, j,n j,n

d- 1d-

I3 j,nI < 1. Summing over j we obtain the desired convergence since

Ig(-)dpd-l(X) - J9g()dpn(T)I < W dl rn

To verify (3.4) we first use (4.2) to observe that

d-l
:5N /2.k

k NKd"k 2

Thus, we have

n N2 Kn+1d
1 ax (p Co. 11 V max (pj 1 i Kd kd 1  N (n+l) d

k max(IIk-lIIk o k co' lk+l O n! < N d  n!

k=2 k=1

The right hand side tends to 0 and so (3.4) is satisfied.

a.e.d.

Remark 4.2. The geometrical construction in Theorem 4.1 was made with (3.4)

in mind. There are other methods of partitioning Zd_ so that the results

of Section 3 can be invoked. For example, let d = 3 and consider the
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"simplex" determined by the six points (±1,0,0), (0,±1,O), and (0,0.±1). The

trace of the boundary of this octahedron on Z2  (with the "eraser-end of the

pencil" at the origin) determines 8 subsurfaces of Zd- 1 having equal areas.

At the next step we make the barycentric triangulation of each face and pro-

ceed to establish 48 subsurfaces having equal areas. In this way we produce

a partition growing exponentially in cardinality, but compensated for by much

finer estimates than (4.2). In particular, at the kth step the partition

{O j,k } has the properties that j = 1,-',23 
6 k - and p 2 (0 j,k) = W 2/(23 6 k-).

Thus I < (W 2 236k-) / 2 and, hence, we have the estimate (for verifying

(3.4)),

1W2 2 3 6 k 8  
6 n+l

T Z max([I 1 k-l II II k1) max( 11, 0001 k+l ) < n6 <

k=2 k=O

which tends to 0. For this partitioning, our verification of convergence in

the Levy topology also applies since the diameters of the 0j, k  tend to 0

as k ---) o.

5. Generalized harmonic analysis and spectrum estimation

Definition 5.1. Given W E L2  (R ) and define
loc

VR > 0, P - 1).~
0 , R IBCR) ( B(R) (¢xB(R)

so that P e L C R d) g M(Rd). Suppose that there is a continuous
(p,R loc

positive definite function P for which lim P = P in the r(M(R )

C C(R d)) topology. Then P V L( dR ) is the autocorrelation of € andc

P = P' is the power spectrum of p.
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Given the vague convergence, lim P ,R = P the positive definiteness

R- R
of P can be easily verified.

Suppose the data characterizing a given signal (p is known. In the

following result, f can be thought of as a properly shaped window function

so that the left side of (5.1) represents the power of (p in the region

suppf. Formula (5.1) provides a method for computing this power in terms of

the known functions f and p. In practice, then, numerical estimates of

the right hand side of (5.1) lead to a spectrum estimation algorithm.

Theorem 5.2. Given ) E L2 (R d ) with autocorrelation P and power
1 oc 4)

spectrum p . Assume there is an increasing function i(R) on (O,w) for

which sup I4(x)l : i(R) and lim i(R) 2/R = 0. Then
Ix R R

(5.1) Vf E C (Rd), j(T) = lm 1 If qpt)2 dt.
1m IB(R)I

B(R)

(A simple estimate shows that f.4) E L 2  (R d) for f E C (R d) andloc c
OE L2  (,Rd ).)loc

2 d

Proof. a. By Bochner's theorem we have P (b+(R ); and, by the o(M(Rd),

C (R d)) convergence lim P = P and the Parseval relation, we havec R 4),R 4

(5.2) Vf e CcCRd)', i IB) 1 ( R))(121f )2d f If()2d ( .

Parseval can be applied since (f-f)P E L (Ed).

Using Plancherel's theorem we see that the left hand side of (5.2) is

(5.3) lim 1 If( t)I 2
R-w IB(R)I I'C) XB(R) 

1 dt;
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in particular this limit exists for each f E C c(Pd) We complete the proofc

once we show that (5.3) equals

(5.4) 1if 2 Rl o TB _(R) j f t) d ;

R-co tB(R)

in particular, we prove that this limits exists, noting that f-T E L 2C(R ).

b. Using the triangle inequality for L 2(R d ) and the generalized

Minkowski inequality, we have the estimate

nIBCR) {f (,xBCR)(t)I 2dt] 1/2 _ (f-0q(t) XBMR2Ct) /2,

B( )TB ( R) I j (' )( )B(R) t ) 1 d

<2 If-( XB R) )(t) - (f P)t)B(R)Ct) 2dt 1

I B(R) 1If BR

(5.5) 1 f(x) EOXB(R) )(t-x) - X ( t) (t-x) dx dt 1

IB(R) K2  -J BR) I

< 1 11/ x) (kOB(R))(t-x) - X B(R)t(tkt-x) dt1dx
IB(R) I2 I I

(B(R))(t-x ) (t)ot-x) 2 1/dx,

IBCR) 1/2 J IBtRx
supp f

for each f E C C(Rd). Consequently, the proof of the result is complete oncec

we show that the right hand side of (5.5) tends to 0 as R -4 m.

c. Let i(R,t-x) = (pZXB(R))(t-x) - XB(R)(t)o(t-x). Then T(R,t-x) is

0 if t E B(R) and t E x + B(R) or if t 1 B(R) and t - x r B(R).

Also, T(R,t-x) = qp(t-x) if t B(R) and t E x + B(R), and P(R,t-x)

-O(t-x) if t E B(R) and t - x 0 B(R). Thus, the right hand side of

(5.5) is
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2 1/2
(5.6) B(R) 11/2 If(x)If If(t-x)12dt + { Iq(t-x)12dt dx,

supp f x,R x, R

where X = {t - t i B(R) and t E x + B(R)} and Y = it : t E B(R)x, R x, R

and t V x + B(R)}.

If Rf = sup {xIx : x E supp f}, then straightforward calculations show

that X c B(R+R )\B(R) and Y C B(R)\B(R-R ) for x E supp f and
x,R f x,R f

large R. Consequently, we can make the estimate

sup Iv(t-x) 
2dt + I (t-x)x2dt 1/2

x,R 
x,R

(5.7) : sup I(IB(R+Rf)I - IB(R)I) sup Iq(t-x)l

xesupp fL tEB(R+R f )\B(R)

+ [IB(R)I - IB(R-Rf)l 1 sup I (t-x)12]1/2

tEB(R)\B(R-R f)

1/2
: a(,R,f)(IB(R+R f)I - IB(R-Rf)l)

where

a(,R,f) = sup sup I1(t-x)12 + sup Iq(t-x)I2)

xEsupp f1 tEB(R+Rf )\B(R) tEB(R)\B(R-R )

By the mean value theorem we have the estimate,

d-l

IB(R+Rf )I - IB(R-% ) f 2 2dR f11/ R+Rf2
(5.8) <IB(R)

Combining (5.6), (5.7), and (5.8), we see that the right hand side of

(5.5) is bounded by
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d-l[2dR 1/12 [R+R f2Isupp f1 11fl ] a(p, R, f ;

and this will tend to 0, thus completing the proof, once we show that

a(q,R,f)/R1/2 tends to 0 as R --) c.

If t E B(R+Rf )\B(R) and x E supp f then It-xI R + 2Rf, and if

t E B(R)\B(R-R f) and x e supp f then It-x! : R + R Therefore,

a((p,R,f) : V i(R+2R ) and so

a(q,R,f) v /  iC(R+2Rf) f R+2Rf ) 1/2

1/2 1/L2 R
R CR+2Rf

which tends to 0 by hypothesis.

r. e. d.

Corollary 5.3. Given the hypotheses of Theorem 5.2. If f E L p d ) and

( E IP'(Rd) 1 : p < c, then the tempered distribution f is a well-

2 -d
defined element of L (R ) and

(5.9) 11f112, p : if1 p 141 p

Proof. If f E C C(R d) then (5.9) is a consequence of (5.1) and Holder'sc

inequality. (5.9) extends to all of LP(R d) since C (d) = LP(R d),
c

1 5 p < c; as such, (5.9) simultaneously defines f and gives a quantita-

tive norm bound (of course, f is known to exist as a tempered distribution

since the elements of LP(R d) are tempered).

a.e.d.

III- 24



Remark 5.4. a. One can formulate a version of Theorem 5.2 for 
L C(Rd

inseadof 2 (d
instead of L C ). In this case the autocorrelation can be defined in

terms of the weak * o(L(R d), L (R d)) topology. As such, the analogue of

Theorem S.2 does not require any hypothesis involving i(R); and the proof

is much simpler since part c (of the proof) can be replaced by a simple

estimate and application of Lebesgue dominated convergence, cf., [Me; B,

89-92].

b. For q E L2  R d) the positive definite approximant P of
loc ' 9, R

Section 5 should be compared with the approximant

Q CRt)= 1 f (t+x)q(x)dxIB IB(R)

of Section 3. First, each P ,R and Q ,R' R > 0, is continuous, and the

bounds

IP M IBCR)1 IC)I 2dx

(R)

and

I Q M, R it) I < 1 J I 9 x ) 2 d x [ , f I T -t x I 2 d x 1 / 2

B(R) (R)

d
are valid for all t E R Second, if V satisfies the growth condition (in

terms of i(R)) given in Theorem 5.2 then {P9 ,R : R > O} and {Q 0 ,R : R > 0}

have the expected similar behavior at infinity. More precisely, we can show

that if lim P = P (resp., lim Q ,R = P ) in the (M(Rd ) C (d))
R9,, 9 , ~i the M( ' Cc

topology then lim Q , = P (resp., lim P = P ) in the (M(R d), C C(R ))

R# R 9, R- o ,R 9 c

topology, and, in either case, P is positive definite. There is a

corresponding pointwise result.
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6. An elementary restriction theorem

We begin with a straightforward Fourier transform weighted norm

inequality having a measure weight.

Proposition 6.1. Given P E Mb+( d ) for which = P E Lp'(Rd). E [,.

Then

Vf E L (Rd)nLP(Od), 11"2g2,<

(6.1)
1/2 2 1 /2[fPliI / (lfflp t Il p)1/2  <- ( 1 Pfp )(ilfII 1  + ff1p

where (L (R d)nLP(R d),1L ll + "'p) is a Banach space.spce

Proof. The Parseval relation,

(6.2) Vf E Ll(R d), jif()12 dp() { f'f(t)P(t)dt,

is valid since f*f(t)P(t) e L 1 d). The right hand side of (6.2) is

f(x) L JJ-)~tdlx:5j1~) lifliI IIPII , J dx.

This and the arithmetic-geometric means inequality yield the result.

c.e.d.

The following is our elementary restriction theorem with explicit norm

constant.

Proposition 6.2. Given d 2 2 and 1 5 p < 2d/(d+l). Then JI 1 1d 1 < CD

and, for each f E L1(Pd)r)LP(iRd),
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(6.3) t If( ) 2 do-d_ (0) d I# _ p, J Ifl]

Proof. Using (4.1) we first show that p d- E Lp (LRd ) for I 5 p < 2d/(d+l).

Not only does J (s) = O(s- /2), S --4 W, e.g., Lemma 3.1, but, also,V

J (s) - sV/[2 Vr(v+l)I, s --4 0, v > -1. Thus, we can estimate

[i _d-2l

I1 d-lll = d l(2n)P [J + r (2nr) dr

1 2

as follows. The first integral is finite (for any p > 1) by the stated

asymptotic property of J . The second integral is finite if d - (dp'/2) +

p'/2) < 0 and this follows if 1 < p < 2d/(d+l) and d 2. The case

p = 1 must be treated separately but is trivial.

The result follows from Proposition 6.1.

qed.

Remark 6.3. a. In light of Theorem 4.1, the surface measure pd-1 is the

power spectrum of a signal (, e.g., Definition 5.1 and Remark 5.4b. Since

the norm constant in Proposition 6.2 is explicit and computable by (4.1), we

see that (6.3) provides a means of estimating an upper bound for the power of

v in the region suppf, even though we don't have precise knowledge of qp

itself.

b. In Proposition 6.1 where P E M b+( d ) is given, if p = 1 then P

is always an element of L (Od ), and if p = 2 then P E L 2 d ) so that

A L (Ad )tL 2(d). In the case P = M d-1 it is clear that p = m can not

be used in Proposition 6.1 since p'd1 4 L 1Rd"
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Problems on Polynomials with Restricted Coefficients
Arising from Questions in Antenna Array Tleory

J.S. Byrnes

We present mathematical formulations of some classical problems in antenna design. For
refercnces concerning these problems, see the paper of Newman and Giroux in this volume.

To begin, we give precise mathematical interpretations to two standard electrical engi-
neering Oefinitions, that of maximum sidelobe level and beamtwidth, which occur in the
analysis and synthesis of a line array of equally-spaced, identical, omnidirectional antenna
elements. As is well known, the model for such an array is a polynomial, where its degree
is one less than the number of elements, and the coefficients are the weights, or shading
coefficients, of the array.

Throughout this discussion, let z = eie lie on the unit circle r, let P(z) denote a poly-
nomial with coefficients aj, at least two of which are nonzero, and let 00 be the smallest
nonnegative value of 0 where the maximum of IP(z)[ occurs. Now let

b, = min{ 6 : 6 < 0 o and IP(eil)l is increasing on (6, 0o) },

62 = max{ 6 6 > 0o and IP(e'o)! is decreasing on (0o, 6)1,
up = max IP(e'e)I, and

9E [o- w.,Oo+,l/(61 ,62)

JOP = 62 - 6b.

The graph of (one full period of) IP(ei*)l is the (modified) beam pattern, ap is the
(modified) maximum sidelobe level, and frp is the (modified) beamswidth of the array. We
use the adjective "modified" because we have omitted the change of variable, normalization,
and expression in terms of decibels that one finds in the engineering literature, but these
differences are of no import here.

All problems presented will be of the following form:
Determine the existence and construction of a P which lies in a certain class, whose beam

pattern satisfies certain properties, and which is optimum (or nearly so) with respect to one
of its parameters. These classes are:

U = { P: IaiI = 11 (the unimodular polynomials),

Uo = {P: IaI = 1 or 01,
S= { P :ai = ±1 },

to = {P:ai = 1,0},

VK={P:maxi< Kj " } (this maximum is the dynamic range of the array),

V),o={P: max

aixa ,0 a --

C = any one of the above classes.

Although a reasonable bound on the dynamic range is ordinarily important (an old rule
of thumb is that "K = 2 and everyone is happy, K = 10 and some are happy, K = 100 and
nobody is happy"), which would seem to render zero coefficients fatal, this is not usually
the case. Since a zero coefficient simply means that that element is tu:ned off (either by
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choice or because it is not functioning properly), this does not affect the dynamic range
in a meaningful way. Furthermore, it appears that in many cases allowing zero coefficients
enables a significant reduction in the degree of P (see problem 4 below).

The time has come to state specific problems:

1. Given a finite (possibly empty) subset S of 1', q = e"9u  S a > 0, 0 > 0, and a class C,
find P E C of minimum degree (if it exists at all) such that P(z) = 0 for all al, S < a,
and Op < 6.

2. Given c > 0 and a class C, find P E C of minimum degree such that

IIP(z)I- IP(z-)II < c for all zz2 E r

(a so-called ultra-flat polynomial).

3. Given S = {eieIeil ,...,e") nonempty, c > 0, 6 > 0, and a class C, find P E C of
minimum degree such that P(z) = 0 for all z E S and

IIP(zI)l- IP(z2)II <C for all-j = e"', =

widi the property that (r 1 , r2 ) n (Oj - 6, Oj + 6) is empty for 1 < j < m (a notch filter).
It is appropriate to observe that, although optimization of the degree is called for in

problems 1-3, near-optimal solutions are definitely of interest. For example, the problem of
most practical interest is 1, in the case where the cardinality of S is very small (even 0, 1,
or 2), and this appears mathematically interesting as well. Also along these lines, we have:

4. Prove or disprove the conjecture: The P E U of minimum degree with an n-fold L 't
z = 1 is

11(1i- 2").
rM=0

In fact, even a proof that the degree of such a P must be exponential in n would be of
interest. Note that if the class U is replaced by Uo (actually even to), then there is a P of
degree less than n3 satisfying the required property.

Analogous problems, when one of the other parameters aside from the degree is optimized,
are of interest as well. In this case there is an additional class of polynomials to be considered:

M,, = ( P : degree P = n and Ia 1,0 < j < n, are preassigned).

Thus, another typical problem is:

5. Given q = e'60, 6 > 0, the degree n (often between 10 and 40, although values can be
as much as a few thousand), and the class C of P, find P such that 8p :5 8 and ap is
minimized.

The simple job of stating other varieties of these problems is left to the reader. Their
solution, a much more daunting task, also awaits the reader's efforts.
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An ideal omnidirectional transmitting array,
and optimal peak factor array,

for less than half-wavelength spacing

James S. Byrnes t
Prometheus Inc.

21 Arnold Avenue
Newport, RI 02840

Abstract
We give an explicit construction of an ideal omnidirectional transmitting array, and optimal peak factor

array, for the case of a linear array of identical omnidirectional elements with uniform spacing of less than
half-wavelength. The construction is based upon the Byrnes polynomials, introduced by the author in 1977.

Introduction

A consideration which is often important in the synthesis of an antenna pattern is the peak factor, which
is the ratio of the peak to average power of the array. For a line array of equally spaced omnidirectional
elements, the mathematical model for the pattern is a polynomial whose coefficients are the weights, or
shading coefficients, of the array. The quantity to be synthesized in this case is the magnitude of P(z) on
the unit circle C = {z : IzI = 1}, and the peak factor is now the ratio of the sup norm to the L2 norm of P.

Clearly the peak factor is bounded below by 1, and the classical problem is to make it as close to 1 as
possible. In addition to arising in peak power limited transmitting and other aspects of antenna design, the
identical question occurs in digital filtering. Furthermore, the same polynomial problem has been the object
of intense study by mathematical analysts for more than fifty years, including such notable mathematicians
as P. Erd~s [3], G.H. Hardy, J.P. Kahane [4), T. Korner [5], J.E. Littlewood [6], and D.J. Newman [7].

A parallel concern, to engineers and mathematicians alike, is the question of synthesizing various antenna
patterns (i.e., constructing polynomials with specified moduli on the unit circle) when certain restrictions
are placed upon the coefficients. When transmitting, for example, one usually wants to maximize the total
power output of the array, which is achieved when each individual element broadcasts at full power. Thus,
in this case, the coefficients must have the same magnitude. In addition, the usual peak power limitation
means that the output power must be as close to contact as possible in all directions, i.e., IP(z) should be
as close to constant as possible on C. The fundamental result in this specific area is that of Kahane [4]:

Theorem. There is an absolute constant c > 0 such that for each positive integer n, there is a polynomial
P(z) of degree n with unimodular coefficients which satisfies

IP(z)l= vv'.+E forall zEC, where IEI <cnA6 logn. (1)

Since any such P has n+ 1 coefficients of modulus 1, so that its L2 norm is obviously V -+, this shows
that the ideal peak factor of 1 is indeed achievable asymptotically, even when the coefficients are required
to have the same magnitude. Note that Kahane's theorem shows that the ratio of the maximum modulus of
P to the minimum modulus of P can be asymptotically I as well, a stronger result than the peak factor one
just mentioned. As an aside, we mention that the corresponding problem when the coefficients are required
to be ±1 is one of the important unsolved problems in this area of mathematical analysis.

Although Kahane's beautiful result was greeted with much enthusiasm by the mathematical community,
it has not found application in the engineering problems discussed above. This is because his proof is
an ezistence one: he shows probabilistically that such polynomials must occur. Thus far such functions
have not been actually constructed. This too is an important outstanding question, in both mathematics

t The author is also Professor of Mathematics at the University of Massachusetts at Boston
Research sponsored by the Air Force Office of Scientific Research (AFSC), under Contract F49620-88-

C-0028.
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and engineering. The purpose of this note is to give an explicit construction of an ideal omnidirectional
transmitting array, and optimal peak factor array, for the case of a linear array of identical omnidirectional
elements with uniform spacing of less than half-wavelength. In certain circumstances such close spacing can
cause a notable increase in mutual coupling. This physical problem will not be addressed here.

Results

As is well known, for a linear array of n equally spaced identical omnidirectional elements the array
factor is the polynomial

-1 dsin0P(z) = aj z2 , z = e2 i, u- (2)

j=0 A

Here, the aj are the shading coefficients, d is the array spacing, A is the wavelength, and 0 is the angle
of incidence (0 = 0 is broadside).

Note that for d = A/2, generally considered the ideal case, 27ru goes from -r to 7r as sin 0 goes from -I
to 1, so that z traverses C completely. However, if d < A/2, then a portion of C will be omitted by z. This
is precisely the property that we now exploit.

In fact, the construction follows immediately from earlier work of the author [2]. The crucial property
of the polynomials introduced there, and later called Byrnes polynomials [1, 5], is given by part (ii) of the
basic theorem in [2]:

Theorem. For n a positive integer, let

n-In-1

P(z) = E Eexp(2rijkn- )zi+kn, z = e 2hiu .  (3)
k=0 j=0

Then for any e, n -1 < E < -, we have IP(z) = n + E for all u, e < ul <,
where IEI < 1 +2r -' + 5(e)-1 '.

To clarify the significance of this result in the present context, suppose for simplicity that d = A/4, so
that z is now traversing exactly 1/2 of C as sin 0 goes from -I to 1. The theorem immediately yields the
correct choice of coefficients, gotten by merely changing z to -z in (3). Hence, the optimal polynomial is

n-In-I sin(
P(z) = E E(-1)j+knexp(27rijkn-1)zj +kn Z = e2v i u , U = sn (4)

k=Oj=0 4

This gives IP(z)i = n+ E, JEl < 1 +227r - 1 < 9 for all 0. Note that the degree of P is n2 
- 1, so that its

L' norm is n and it represents an array with n2 elements. Furthermore, the error E is uniformly bounded
independent of n, so that we indeed have an optimal peak factor array. In addition, the coefficients of P
are unimodular, so that it also represents an ideal omnidirectional transmitting array. These properties arc
illustrated in Figures l.a-le, showing polar plots of IP(z)l in Equation (4) for various choices of n and for
-ir < 0 < 7r. Observe that for small n the actual array patterns exhibit an error that is considerably smaller
than that obtained for the general case considered in [2]. Finally, the spread (i.e., the difference between the
maximum and minimum, expressed in dB's) of IP(z)l as a function of the number it2 of elements is shown
in Figure 2. This graph clearly illustrates the desired flatness of IP(z)I, as described above.
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Figure 2: Spread of IP(z)I as a function of the number of elements.

V-5



Bibliographty

[1] G. Benke, "On the maximum modulus for a certain class of unimodular trigonometric polynomials," in
Recent advances in Fourier analysis and its applications, pp. 73-90, J. S. Byrnes and J. L. Byrnes, eds.,
Kluwer, 1990.

[2] J. S. Byrnes, "On polynomials with coefficients of modulus one," Bull. London Math. Soc., vol. 9, pp.
171-176, 1977.

[3] P. Erd6s, "Some unsolved problems," Mich. Math. J., vol. 4, pp. 291-300, 1957.
[4] J.-P. Kahane, "Sur les polyn6mes iL coefficients unimodulaires," Bull. London Math. Soc., vol. 12, pp.

321-342, 1980.
[5] T. W. Korner, "On a polynomial of Byrnes," Bull. London Math. Soc., vol. 12, pp. 219-224, 1980.
[6] J. E. Littlewood, "On the mean values of certain trigonometric polynomials," J. London Math. Soc.,

vol. 36, pp. 307-334, 1961.
[7] D. J. Newman, "An L1 extremal problem for polynomials," Proc. Amer. Math. Soc., vol. 16, pp.

1287-1290, 1965.

V-6



Prometheus Inc.
Final Report
11 July 1990

Section VI
Polynomials with Unimodular Coefficients



Properties on the Unit Circle
of Polynomials with Unimodular Coefficients

By Donald J. Newman and Andr6 Girouxt

Prometheus Inc.
21 Arnold Ave.

Newport, RI 02840

The following problem is posed in [1]: given the magnitude of the coefficients of a polynomial P, a finite
subset S of the unit circle C, and a point p on C distinct from those in S, choose the phases of the coefficients
so that P(z) = 0 for all z in S, the maximum on C of IP(z) occurs at z = p, and the maximum of IP(z)l
on a subset of C excluding an appropriate interval around p (the "beamwidth") is as small as possible.
As explained in [1], this problem arises naturally in linear antenna theory, filter theory, and other classical
electrical engineering applications.

Our main result is encompassed in the following theorem:

Theorem. Given al, a 2 ,..., c, OP on C, /3 a,, there exists a polynomial P with coefficients of modulus
one such that the zeros of P on C are precisely the points al, a 2 , ... , an and that

IIPII = max{jP(z)j : z E C} = IP(/3)I-

(The points aj are not assumed to be distinct: multiple zeros are allowed.)

We shall prove the theorem in two steps, first constructing a polynomial with coefficients of modulus one
with the prescribed zeros (lemma 1) and then modifying it so that it also has the prescribed maximum
(lemma 4).

Let U denote the (non-linear) class of polynomials with coefficients of modulus one. We introduce in U the
operation of "encapsulation" which we denote by ®.

Definition. Let M be the degree of P. Then

Explicitly, then, if P(z) = JM0 atzk and Q(z) = " bzJ, then P 9 Q(z) +M z" Where
cj(M+l)+k = akbj for 0 < k < AM and 0 < j < N.

From this expression, it is clear that ® is associative and that U is indeed closed under it. Also, if Q does
not vanish on C, then the zeros of.' ® Q are precisely those of P.

Lemma 1 . Given al, a2 ,.. ., an on C, there exists Pn in U which vanishes at the aj and nowhere else on
C.

Proof. Let w = exp2ri/3. We shall prove a little more, namely that such a polynomial can be found
with constant term one and leading term -w. We use induction on n. Let

Q1 (z) = 1 - z/a 1

and let

Pi(z) = Qi(z) if ajW = 1

and
Pi(z) = Qi(z) 0 (1 + z + aowz 2)

= 1 - (1/ai)z + Z2 _ (1/o 1 )Z3 + oIWZ4 _ WZ5

t The authors are also with Temple University and the University of Montreal respectively.

VI- 1



otherwise (the condition a1 w $ 1 also ensures that the polynomial 1 + z + aiwz2 5 0 on C). Assume now
that R(z) = 1 + .. . z - wz is a polynomial in U of which the zeros on C are precisely the points 0j = aj/a.
for 1<j<n-1. Set

S(z) = R(z)(1 - zN + 2N - z3 N+)

-I + ... +wz4N+1.

To verify that S is in U, we need only check the modulus of the coefficients of zN and z2N . But, the
coefficient of zN is -w - 1 = w2 and that of z2N is w + 1 = -w 2 . We now claim that

1 z
N + Z 2N Z3N+1

does not vanish (fl C except for a simple zero at z = 1. Indeed, for the sum of four points on C to vanish,
it is necessary and sufficient that they cancel in pairs. There are thus three possibilities:

a) 1- zN = 0 and z 2Nv _z 3 N+ 1 = 0; this gives zN 1 and zN+ -1, hence z =1;
b) 1 + Z2N = 0, zN - zaN+1 = 0; this implies z 2N = 1, z2N + = -1, which is impossible;

c) I - ,3N+1 _ 0,--ZN + z
2
N = 0; in this case, z3N+1 - 1 and zN = 1, therefore z2N+1 - zN+1 = ZN = 1,

hence z = 1 again.

Setting

Q-(z) = S(z/Cr-) = 1 +. + (W/a4N+)z 4N+1

we obtain a polynomial in U vanishing on C precisely at the points al, a2,.-. , an. Then

Pn(z) = Q.(z) if a 4 N+l -- 1

and
P.(z) = Qn(z) ( (1 + z - a4N+lZ2) otherwise.

This completes the induction and the proof of the lemma.

Lemma 2. If n > 3, the polynomial pn(z) = 1 + z + z 2 + ... + zn- 1 
- zn + zn + 1 +... + Z22n

- does not
vanish on C and max{Ipn (z)I : z E C} is attained if and only if z = 1.

Proof. Since
Z2 - 1pn(z) - Z- 1 2z"

we see that

pn(ei2 6)e i(2n_1) = sin 2n - 2e'asin 0

so that pn(e' 2 ) = 0 implies that e'e is real which implies in turn that pn(ei2e) = p,(1) = 2n - 2, a
contradiction.

Our statement about the maximum modulus property of pn (z) follows from the fact that Pn2 (z) has positive
coefficients.

Lemma 3. If n > 0, the polynomial qn(z) = 1 + z z 2 + ... + z" - zn+ 1 does not vanish on C.

Proof. One has (1 - z)qn(z) = 1 - 2zn+ l + zn+ 2, which, by the triangle inequality, can vanish only if
1, Z"+1 and z" +2 are in the same direction; that is, here, z = 1. But, obviously, qn(l) A 0.

Lemma 4. If P is any polynomial such that P(fl) $ 0, then there exists a polynomial T in U which does
not vanish on C and is such that P ® T attains its maximum modulus on C at z = 3.
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.f , w,

Proof. We can assume that i3 = 1. let T = q,., ® r ® p,, where q,, and p, are as in lemmas 3 and 2
respectively, and r(z) = 1 + e'$z - Z2 with 0 :0 =kr/2: r(z) does not vanish on C and Im r'(1)/r(1) = 2sin 0.
Consider first P* = P ® q,, ® r. If M is the degree of P, then

P'(1) P'(1) + (Al + () +- _ - -1): + (M + 1) ( +2
P.(1) P(1) q.(1) r(l)

and therefore

Im P(1 = Im P'(1) + 0 + (Al + 1)(m + 2)Ir ?Im = Im P'(1) + (Ml + 1)(m + 2)2 sinG.
P"(1) P(1) r(1) P(1)

A proper choice of m and 0 will cancel this expression, making zero a stationary point of the function

IP*(eie)j 2 . Since this function does not vanish at 0 = 0, this stationary point can be transformed into the
maximum point over all 0 by multiplying P* by a delta-like function, in our case by encapsulating it with
p, for suitably large n. Indeed, one has

Ipe)2 sin nO ('sin nO
Ip.(CiO)l 2 = 4 - 4 snn cos 0/2 + si 2

sin 02c ksin0/2)

By computing the second derivative, it is easily seen that p,(O) falls off like e- cne 2, and this shows that it
is an adequate delta function for our purposes.

This completes the proof.

Reference.
[1] Jarmes S. Byrnes, Donald J.Newman, "Null Steering Employing Polynomials with Restricted Coeffi-
cents", IEEE Transactions on Antennas and Propagation, 36(1988), 301-303.
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ANTENNA ARRAY WEIGHT DESIGN
OVERVIEW OF PRESENTATION

OVERVIEW OF PRESENTATION

e Sensor array signal processing - problem formulation

e Various objectives and approaches - real-time versus off-line

* Problem complexity and realistic simplifying assumptions

* Antenna array weight design

e AWD - the program

* Examples
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ANTENNA ARRAY WEIGHT DESIGN

SENSOR ARRAY PROCESSING

General Problem Characteristics

" Inputs are discrete samples of a continuous function of one or more
independent variables

- digital filtering of analog signals

- phased array radars

" The function being sampled generally consists of a superposition
of multiple signals of interest and noise

- sinusoids in analog signals - time series analysis

- plane waves impinging on an array - sensor array process-
ing

" Signals may be functions of parameters of interest

- frequencies of sinusoids

- directions-of-arrival (DOAs) of plane waves

" Reconstruction of signals as functions of time may be of primary
interest
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SENSOR ARRAY PROCESSING
OBJECTIVES AND APPROACHES

Objectives

" Obtain parameter estimates in real-time

- track time-varying frequencies of sinusoids in noise

- track moving targets - active/passive radar tracking

" Obtain optimal parameter estimates off-line

- trajectory reconstruction - error analysis

* Reconstruct one or more signals individually in multiple signal
environment in real-time

- establish reliable communication links

- passive listening in multiple source environments

Approaches

* Off-line

- many approaches possible

- choice depends on computational cost and available re-
sources (cf. maximum-likelihood)

e Real-time

- adaptive array processing

- pseudo-adaptive array processing
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ANTENNA ARRAY WEIGHT DESIGN

PROBLEM FORMULATION

Problem Statement

* GIVEN

- sensor array of known fixed geometry,

- statistics (second-order) of noise,

- parameters of signals of inteiest (e.g. DOA, center fre-
quency)

- parameters of unwanted signals (e.g. jammers)

o FIND

- a linear combination (weight vector/linear functional) of
sensor element outputs

that

o MINIMIZES/MAXIMIZES

• - a cost/merit function of the combined array output

* SUBJECT TO

- various design specifications.
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ANTENNA ARRAY WEIGHT DESIGN
SIMPLIFYING ASSUMPTIONS

Simplifying Assumptions

" Medium of transmission is assumed to be isotropic and non-

dispersive.

" Array consists of sensor elements with fixed relative locations.

* Signal sources are assumed to be farfield and lie in the plane of
the array.

" Sensor elements are omni-directional.

" Elements have constant gain inside a predetermined (finite) fre-
quency band of operation and negligible gain outside such band.

" Noise present in every sensor output is

- additive, zero-mean, and stationary,

- uncorrelated with the signals of interest (SOl).
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ANTENNA ARRAY WEIGHT DESIGN
PROBLEM FORMULATION

Combined Array Output

nl

n2

n3

• nN

S N
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ANTENNA ARRAY WEIGHT DESIGN
PROBLEM FORMULATION

Array Under Consideration

y

jamming signal signal

antenna array elements
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ANTENNA ARRAY WEIGHT DESIGN

PROBLEM FORMULATION

Basic Definitions

o Complex weight vector (to be designed)

Wi

w 2

WN

o The noise-free sensor output vector

S1

S2

SN

o The noise vector hi
n2

nN
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ANTENNA ARRAY WEIGHT DESIGN

PROBLEM FORMULATION

Basic Equations

" Noise-free output

S(o, W) = w*s(9, W)

* Noise output
S, = w*n

" Total output
z(9, )= S(O, w) + S"

" Total noise power

N
Pn - E OIWil 2 = W*ZWi=1

where

S= diag(o 1 , o2,.., UN) = E(nn*)
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ANTENNA ARRAY WEIGHT DESIGN

PROBLEM FORMULATION

Sensor Element Output

* The ith sensor element output can be written as

s2 (9, w) = exp(j27rf (xi cos 0 + y sin 0))

* f is the normalized (dimensionless, factual/fnominal) signal fre-
quency,

* 0 is the incident angle (degrees),

* xi is the x-location (in units of Anominal) of element i, and

* y2 is the y-location (in units of Anominal) of element i.
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ANTENNA ARRAY WEIGHT DESIGN

REAL-WORLD PROBLEMS

Real-World Problem Characteristics

* Signals of

- unknown number,

- unknown directions of arrival (DOAs),

- unknown frequencies.

* Modeling errors

- unmodeled signal environment (e.g. reflectors, echo, etc.),

- inter-element effects,

- anisotropic media,

- nonlinearities.
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ANTENNA ARRAY WEIGHT DESIGN

HANDLING REAL-WORLD DESIGN

On-Line Adaptive Methods

* Maximizes (minimizes) a certain merit (penalty) function (e.g.

SNR) of the combined array output.

e Rely on some knowledge of SOI,

- DOA, frequency,

- functional form.

* Difficult to take advantage of apriori knowledge of interfering sig-
nal frequencies, directions-of-arrival, etc.

* Designed to be computationally efficient and very fast.

* Basically places pattern nulls in interference DOA's. Thus, is quite
sensitive to interference/signal correlation.
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ANTENNA ARRAY WEIGHT DESIGN

HANDLING REAL-WORLD DESIGN

Deterministic Methods

* Assumes knowledge of frequencies and directions of arrival of sig-

nals of interest and interference.

* Computationally demanding

- slow compared to adaptive methods,

- unsuitable for on-line compuation,

- pre-storage of off-line results is necessary.

* Merit functions, pattern nulls, pattern constraints and array gains
are arbitrary.

* Sensitivity to data can be reduced as desired by clever choice of
design constraints and/or the merit function.
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ANTENNA ARRAY WEIGHT DESIGN

HANDLING REAL-WORLD DESIGN

Combining Adaptive/Deterministic Methods

* Adaptively estimate signal/interference parameters and obtain an
initial set of weights.

* Select an appropriate merit (penalty) function and a desired set
of desing constraints, and

- run a suitable deterministic scheme (e.g. our scheme),

- obtain optimal weight vector,

- such weights produce desired output.

* One suggestion to use results of deterministic schemes on-line is
to

- devise a combination possible scenarios,

- use off-line computations to find corresponding optimal
weight vectors,

- store resulting weight vectors in memory,

- using on-line data, determine most appropriate weight
vector to use.
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ANTENNA ARRAY WEIGHT DESIGN
DETERMINISTIC ANTENNA WEIGHT

DESIGN

Closed Form Methods

9 Usually old methods (40's and 50's)

e Easy to implement (hand calculations, charts, ...)

* Restrictive in nature.

* Fast.

* Example: Dolph's method.

Iterative Methods

* Newer methods. Uses currently available computing power.

* Implementation requires intensive computations.

e Less restrictive.

o Much slower.

* Example: our method.
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ANTENNA ARRAY WEIGHT DESIGN
A HISTORY OF DETERMINISTIC

METHODS

Closed Form Methods

" Stone (U. S. Patents 1,643,323 and 1,715,433):

- A binomial expansion representaion.

- Design of patterns by choice of coefficients.

" Schelkunoff (1943):

- Polynomial representation of arrays of equally spaced an-
tenna elements.

- Design of patterns by cleverly placing zeroes of the repre-
senting polynomial.

" Dolph (1946):

- Design using Tchebychev polynomials.

- Obtained optimal tradeoff between sidelobe gain and
mainlobe width.

- First to talk about solutions that are optimal in some
sense.
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ANTENNA ARRAY WEIGHT DESIGN

A HISTORY OF ITERATIVE METHODS

Non-convex Design

e Cheng and Tseng (1965,1967):

- Optimization of Hermitian ratios.

- Unconstrained case: generalized eigenvalue problem.

- Constrained case: iterative solutions.

- Method actually known before. Others used same meth-

ods. For example, Butler, et al., (1971,1972).

* Waren, et al.,(1966,1967):

- General mathematical programming approach.

- Optimization of magnitude and phase of weights.

- Design of array geometry.
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ANTENNA ARRAY WEIGHT DESIGN
A HISTORY OF ITERATIVE METHODS

Convex Design

* McMahon, et al., (1972):

- Optimize real and imaginary parts of weights taken sepa-
rately.

- Translate problem into linear program.

- Fake a "tuned" objective funtion.

* Wilson (1976):

- Similar to above approach.

- Uses a Tchebychev-norm approximation technique.

" Evans and Fortmann (1975): a functional programming approach.
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ANTENNA ARRAY WEIGHT DESIGN

CONVEXITY

Basic Definitions

Definition 1 (Convex Set) Q C V is said to be a convex set if
yx + (1 - f)y E Q whenever x, y G Q and 0 < p < 1.

Definition 2 (Convex Function) A function f V -R is a
convex function on a convex set Q C V if f (/x + (1 - /u)y) <

,uf(x)+(1 -)f(y) for all x,yE Q andO < p < 1.

Definition 3 (Convex Program)

minimize J(w)

subject to w E Q

where P'" V --+ R is a convex function and Q is a convex set.
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ANTENNA ARRAY WEIGHT DESIGN
CONVEXITY

Basic Facts

Fact 1 Given the convex program described above, and given that

the set Q is non-empty and closed, then the set of points, Q0 C ,

that solves the convex program is a non-empty convex set.

Fact 2 Let fl V -- R and f2 : V --+ R be a convex and concave

functions (respectively) on a convex set Q E V, then the sets

0 {W E Qlfi(w) < b}, and

* {w E QIf2(w) _ b}

are convex for any b E R.
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ANTENNA ARRAY WEIGHT DESIGN

CONVEXITY

Basic Theorems

Theorem 1 Let {fl, f2, . . . , f, }, be a set of real valued convex func-

tions on a convex set Q C V, then the following functions are convex

on Q.

* Fl(x) = max fi(x).
l<i<n

* F2 (x) = Y;l oqfi(x), where ci > 0.

Theorem 2 Let f : E x Q -- R, be a real valued function, where

Q C V is a convex set and E C U is any subset of U. If the function

fo(w) = f(o, w) is convex on Q for any fixed a E E, then the function

F : Q - defined by

F(w) = sup f (o, w)
0iEE

is convex on Q.

VII-22



ANTENNA ARRAY WEIGHT DESIGN

CONVEXITY

Some Convex Functions of Weight Vector

* Total noise power, Pn, = w*Ew.

* Real and imaginary parts of a certain (scaled) element weight,

* Magnitude of a certain (scaled) element weight, aw.

* Real and imaginary parts of scaled noise-free pattern function,
aS(O,w).

* Scaled array noise-free pattern gain, IaS(O, w)I.

* max IS(9, w)I for any fixed 0.

* max jS(,w)I for any fixed w.
01<0<02

• max IS(0, w)I are also convex for any 01, 02, W I and w2.01! <<02,W1< <_W2

* Any positive combination of the above functions.

VII-23



ANTENNA ARRAY WEIGHT DESIGN

CONVEXITY

Why Convexity

" Efficient algorithms for solving convex programs exist. That is,
such algorithms

- are fast,

- are numerically stable,

- can detect whether an optimal solution exists or not.

* Locally optimal solutions are globally optimal.

" Additional information, such as the Lagrange multipliers (dual
prices) are extremely useful in judging a design.
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ANTENNA ARRAY WEIGHT DESIGN
GENERAL CONVEX WEIGHT DESIGN

General Outline

" Reduce weight design problems to convex programs.

* Approximate general convex programs by ones for which efficient
algorithms exist.

* Solve approximate convex programs.

" Report optimal weights and shadow prices (Lagrange Multipliers).
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Design Array

specifications

Array geometry

lement gain patterns

AWDSL program

input to compiler
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Convex program

Slo additional
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I (feasibility,

Lagrange multipliers. etc...)

Simulation
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AWDSL Program

Lexical Analyzer 
Parser

Design
ProblemE

Translator

Convex

Program

Convex Program Solvel

I
Solution wopt

Figure 1: Our implementation of awd, a specification language compiler and solver.
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ANTENNA ARRAY WEIGHT DESIGN

GENERAL CONVEX WEIGHT DESIGN

Questions and Answers

Question: What antenna weight design problems can be reduced to con-
vex programs?

Answer: A very general class of weight design problems can be cast as
convex programs.

Question: Can large problems be translated to convex programs in real
time?

Answer: Automating the translation step from a design problem to a
convex program using computers rather than having it manually
done, makes it possible to handle large problems.

Question: How closely does the approximate program represent the orig-
inal problem?

Answer: If the translation is accurately done, the approximate program
can be made arbitrarily close to the original problem.
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ANTENNA ARRAY WEIGHT DESIGN

GENERAL CONVEX WEIGHT DESIGN

Questions and Answers

Question: Can the approximate program be solved effectively
and are such solutions reliable?

Answer: If the approximate program is a linear or quadratic pro-
gram, then there are fast, reliable and effective algorithms
to find solutions.

Question: Can the mathematical program solution be related to
the original design problem?

Answer: An inverse translation is necessary to relate the opti-
mization results to the original problem.

Question: Are there any extra advantages that warrant the ex-
tra effort?

Answer: Additional information available at the end of the op-
timization (e.g. Lagrange multipliers) is as important as
the actual solutions.

Also, if such method fails, then no other method can suc-
ceed in solving the problem. Non-convex iterative methods
cannot assert such a powerful claim.

Question: Where does the proposed method fit in the typical
engineering design cycle?

Answer: To be discussed later.
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A Proposed Approach To Convex Design

" Introduce a specialized specification language, called
Antenna Weight Design Specification Language
or A WDSL, to facilitate the specification of a convex
weight design problem.

" Introduce a specification language compiler to

- automate translating a design problem into a con-
vex mathematical program, and

- link the solutions and whatever extra information
resulting from optimization to the original design
problem.

" Choose a class of convex optimization problems which can
arbitrarily approximate the original design proble-ii and
for which effective algorithms exist.

" To facilitate implementing optimization techniques, think
of a complex weight vector as a pair of real vectors.

W = WR +]jWc

where

WRW (E R N

are the real and imaginary components of the complex
weight vector.
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Our Proposed AWDSL Structure

array-description {
descfiption of array geometry
and element characteristics

}
minimize {

design objectives

}
subjectto {

design constraints

}
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The Array Description Section

array-description{
/* number of antenna elements in array */

n-elements = number of elements;

/* lower and upper bounds on frequency band *

lowerf req = lower bound;
upper-freq = upper bound;

/* specify the x locations */
element-x-loc(i) = x-loc of element i;

/* specify the y locations */
element-y-loc(i) = y-loc of element i;

/* specify the element noise powers */
element-pwr(i) = power of element i;

/* specify the initial weights */
element-w(i) = (real part , imaginary part);

}
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The Objective Section

An objective term is of the form

expr * g;

where expr is any positive expression and g is one
of the following convex functionals

o noise-pwr,
* max-magS( 1 , (02, j),
o max-magS (0 1 , 02, j) (f), or

* max-magS (0 1 , 02, j) (f, f2, k).
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The Constraints Section

Constraints are in the form of functional inequali-
ties such as

g <= expr ;
expr >= g ;
g >= expr ;
expr <= g ;
g== expr ;
expr== g ;
exprl <= g <= expr2 ;
exprl >= g >= expr2 ;
abs(g) <= expr

expr >= abs ( g);
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The Constraints Section/continued

The g is one of the following functionals

9 re (scL-fctr *W(W),
* im(scI-fctr*W(i)),

9 mag (scb-fctr *W W))

* null (9, f ),
9 re(-scbfctr*S(O, f)),
* im(scI-fctr*S(O, f))
e*max-nagS(01, v62, j),

max-iag-S (01 , 02, j) (f ), and

o*max-mag.S (O 1 , 02 , j)(fi, f2, k).
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Producing and reporting awd results

Optimization usually ends with

* found strong minimum: the unique feasible
optimal weight vector (w) was found.

" found weak minimum: non-unique feasible
weight vector (w) that minimizes the objec-
tive function was found.

* solution appears to
be unbounded: happens only if the weight
vector (w) in the AWDSL program does not
have explicit bounds. It is generally a symp-
tom of an ill-formulated design problem.

* no feasible point found: there is no
weight vector (w) that satisfy the con-
straints. Some (or all) of the constraints in
the constraints section must be relaxed.
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Output Listing

The listing for design constraints will be six-
column lines containing the following information

constraint value lo_bn.d upbnd lambda status.

These columns are as follows.

Column 1: description of functional, e.g.

e re (sclfctr*W (i)), or may be

* max-magS(0 1, 02, j)(fi, f2, k).

Column 2: value of functional.

Column 3: value of lower bound on functional.

Column 4: value of upper bound on functional.

Column 5: value of Lagrange multiplier for func-
tional.

Column 6: This field is empty if functional is
within its bounds. Otherwise, it will contain
one of:

elb

" ub

" violates lb

" violates ub
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Sample Ouput Listing
The following segment in the constraints section of
the source file filename

re(S(O)) >= 1.0;
mag(S(O)) <= 1.5;

null(270,0.9);

may produce the following isiting

re(S(O)) 1 1 le+10 1.04 lb
mag(S(0)) 1.082 0 1.5 0
null(270,0.9) 0 0 0 0

Similarly,

maxmagS(90,270,50)(1.1) <= 0.1;

may produce the following lines in filename, out

max-magS(90,270,50) 0.1035 0 0.1 1.87 ub
Above constraint attains bounds at:

1.1 90 0.1035 1.24
1.1 180 0.0999 0.63
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Abstract

In this paper we introduce a new computer-aided approach to the design of weight vectors

for antenna arrays of omnivariant elements responding to signals in the far-field of the array.

The problem of concern is the deterministic problem, where frequencies and directions of arrival

for sources are assumed to be known.
The approach relies on the ability to cast many typical design problems as convex program-

ring problems with the real and imaginary parts of the complex weight vector as the decision
variables. In this approach we introduce an antenna weight design specification language com-

piler as a tool for translating design objectives and specifications from everyday engineering
language into a convex mathematical program. Resulting convex program is then passed to a
standard convex program solver and results are reported in an easily interpretable form.

1 Introduction

1.1 Design of Directivity Patterns

The problem of finding array elelment weights so as to shape certain directivity patterns
for the sensor array is an old one and the approaches used are quite diverse. In general, we
can divide the Inethods lised into two 111a,111 categories, closed forilm aind i tcrative techniques.

On the one, hand, closed form techniques axe easy to utilize, yet the cla.ss of problems for
which such methods can be used are usually restricted. Thus. the computational efficiency

'TVie authors are currently with the Information Systems Laboratory., l)epartment of Electrical Engineer-
ing, Stanford University, Stanford, CA 94305
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is offset by the limited applicability. Oin the other hand, iterative methods usually attain

the less restricted applicabiliLy by sacrificing the computational case offered by closed form

solutions.
Historically, closed form methods were the first to appear in literature. The ability to use

tables, charts, and hand calculations were, in our opinion, the real reason for this. For a trans-

mitting array of equally spaced elements, Stone' used a binomial expansion representation of

the array pattern with the exciting currents as the binomial coefficients. SchelkunofF [ScI43]

used the ability to represent arrays of equally spaced antenna elements as polynomials to de-

cide on the appropriate currents to shape directivity patterns of transmitting antenna arrays

by intelligent choice of zeroes of the representing polynomial.' Dolph [Do146, Rib47, Pri53]

used Tchebychev polynomials to find an exceedingly easy solution for the optimal tradeoff

between sidelobe gain and mainlobe width. Dolph initially assumed a linear array of equally

spaced narrowband transmitting elements symmetrically placed around the origin so that

the combined array output can be assumed totally real, and that the exciting currents are

in-phase. Different attempts were made afterwards to relax some or all of these assumptions.

The significance of Dolph's work is that he was the first to talk about a solution to the

pattern shaping problem that is optimal in some sense. This in itself difterentiates his work

from earlier ones which gave a (and not the) solution to the problem. What followed was a

search for solutions that are optimal in one sense or another. For instance, one of the methods

proposed was that of representing array directivity as a ratio of two "f1lermitian" forms

and attempting to maximize this ratio by use of generalized eigenvalues and eigenvectors

arguments [CT65, TC67]. Attempts to handle extra constraints on the pattern can be found

in [SB71, VB72, Che7l]. The last two papers have a good review of the literature (Vestern

and Eastern) on this approach. Such Hermitian ratios are not convex, and thus solutions

obtained for the constrained case are generally local. That is, it is almost always the case

that there is a better solution that the method did not locate.

Waren et. al. [LSW66, WLS67], suggested the use of mathematical programming for

optimizing different aspects of antenna. design (including geometry). The problems that were

posed, whether weight design or otherwise, were generally non-convex. Lack of convexity

meant that produced solutions were typically "local," and that the failure to produce a

set of parameters that satisfy the design specifications did not answer the question about

the solvability of such a problem. That is, the method failed to answer the question of

whether there exists any set of parameters for which the design specifications can be satisfied.

Furthermore, convexity is an underlying assumption for nearly all efficient optimization

algorithms. Thus, specifying non-convex optimization probIlems limits the ability to utilize

most of the existing efficient optimization procedures.

Of the different methods utilizing convex programming for antenna array weight design,

'U. S. Patents 1,643,323 and 1,715,433
"Using the principle of reciprocity [Kra88l, excitii)g currents for traiisiit.tiig aitejinas can be thought. of

as element weights for receiving antennas.
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we choose to mention those of [MIM72, EM,5, Vi176, '1l78]. Evans and Fortmann [1P75]
studied the related problem of optimizing patterns for antennas with continuous line-source
excitation. A functional analysis argument was used to solve the problem. Although this
problem is removed from our discussion, the link can be seen from the fact that an array can
be thought of as a "sampled aperture" (see for example [Ste76]). Of particular interest to
us are the works of Wilson [Wil76, Wi178] and McMahon, et. al., [MI1M72]. In particular,
the optimization method we utilize is similar to that proposed in [MHM72].

In [MHM72], the constraints on the magnitude of the pattern were translated to con-
straints on the real and imaginary parts of the pattern function (with a possible 3dB error).
The real and imaginary parts of the weights were taken as the design variables. Thus, con-
straints on the pattern were translated to linear constraints on the design variables. In order
to obtain a linear programming solution of the above problem, the authors "created" a linear
objective function especially tuned so as to reduce the mainlobe beamwidth. One interesting
aspect of the above approach is that the authors, although their concluding discussion shows
that they appreciated the significance and generality of their approach, in our opinion failed
recognize a major advantage that their approach had over earlier ones. Since the problem
solved was, due tz discretization of the pattern and the 3dB errors, less restrictive than the
original problem (where the magnitude of the pattern strictly lies within the designated lim-
its for all angle points), and since the original problem was a convex one, it is obvious that
if the method discussed above failed then there are no element weights that will satisfy the
original constraints. Thus, if the designer, using such a method, failed in obtaining solutions
satisfying the constraints, the problem itself as posed should be re-examined rather than
attempting different approaches to solving the problem.

Wilson, [Wil76, Wi178], utilized a similar method. In his approach, Wilson described the

array pattern as a function of the phase and magnitude of element weights. By imposing
symmetry of the array around the origin, the phase of the weights was assumed to be constant
and the pattern was assumed to be totally real (not unlike Dolph's assumptions). Thus,
the only variables remaining were magnitudes of the weights. An approximation scheme,
[BY66], was then used to find the variables (magnitudes of weights) that will minimize the
Tchebychev (infinity) error between the actual response and a desired response at selected
angle points. This approximation scheme is based on linear programming techniques. The
interesting note about this method is that had Wilson assumed the decision variables to
be the real and imaoinary parts of the weights, rather than the magnitude and phase, the
symmetry constraints imposed on the problem could have been easily discarded of, and the
method would have become similar to that, of [MIIM72].

1.2 A Proposed Approach to Optimal Directive Pattern Shaping

In this paper we propose a new approach to optimal directive pattern shaping. We
only concern ourselves with design constraints and objectives that are proven to be convex
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functionals of the weight vector. Non-convex problems will not be considered. This not w
say that such problems are not important. lFor exam ple, the problem of finding the optimal
geometry to attain a certain pattern is a very interesting one. Another interesting jioji-

convex design problem is considered in [LJ88. In that work the authors study the problem
of minimizing the number of active elements (or maximizing the number of zero clelnietls)

in the antenna array while satisfying certain design constraints.
Unfortunately, the current status of mathematical programming does not allow handling

such problems efficiently. Moreover, solutions produced with existing algorithms will, at
best, be local solutions. That is, there is no way of knowing how far such a solution is

from the global optimum one. Furthermore, failure of such methods to produce an initial

feasible point (if the constraints that define the set of feasible designs are not convex) does

not convey much information about the existence of a feasible point (i.e. one which satisfy

design constraints).
In addition, experience from other fields, such as economics, indicates that the extra

information, e.g. the Lagrange multipliers or shadow prices as they are often referred to,

available from a typical convex program solver, is in many instances as important as the

actual solution itself. These shadow prices reflect to the designer the tradeoff between the

"tightness" of the design constraints and the value of the design objective, thus, giving the

designer an opportunity to decide whether keeping the constraints as tight as they are is
"worth it."

We also propose the use of a specialized design language compiler, referred to as the

antenna weight design specification language, as a mechanism for translating the design

problem from engineering specifications to the corresponding convex mathematical program.

The significance of this approach is that it automates the important step of translating

antenna weight design problems into convex mathematical programming ones. The antenna

designer need not be an expert in mathematical programming. Thus, the designer should not

carry the burden of translating the engineering specifications, which may resemble a large

number of objectives and constraints, into a convex mathematical program. The designer

should also expect results of the design process to "make sense" from an engineering point

of view. Although mathematical programming results from a typical convex program solver

contain enormous information, this information need not make sense to a mathematical

programming novice.
This specification language approach, combined with convex programming, has been

successfully used recently as a computer aided design tool in designing controllers [BBB*88,

Khr90] for linear time-invariant dynamic systems. In that work, the ability to parametcvizc

all stabilizing controllers of a dynamic system combined wi th the fact, tha. many specifica-

tions on the control system translate into convex constraints on these free parameters, were

exploited to represent the design problem as a convex program.
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2 The Antenna Weight Design Problem

2.1 Underlying Assumptions

Consider a planar array of N sensor elements with fixed relative locations. Llcieniits are
assumed to have negligible gain outside a predetermined (finite) frequency band of operation.
This can be attained in practice by passing the sensor output through an "ideal" band -pass
filter (BPF) before processing the signal. Medium of transmission is assumed to be isotropic
and non-dispersive. Signal sources are assumed to be farfield and lie in the plane of the
array as shown in Figure 1. Furthermore, it is assumed that each sensor in the array will
have an additive zero-mean stationary ioise component at its output. This noise can be due
to thermal, amplifier, and/or spatial noise. This noise is assumed to be uncorrelated with
the signal component. Without loss of generality, it is also a ,sumed that noise components
in different elements are uncorrelated.'

y
Jamming Signal Signal Of Interest (SOl)

//0 AOl

Antenna Array Elements

Figure 1: Antenna array under consideration.

Letting s, (o.w) bc the output of the I'h element with respect to ;, certain signal arriV'
ing from the 0 dir, ction with angular frequency w, a fundamental assunilntion is that the

'A simple wztening argument can be used to justify this for correlated noise.
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combined array output due to such signal can )e written as

N

y(O, W) >w i(S(O,' W) + j). (1)
i=I

where zvi is referred to as the element weight of the ith element, uwi is its complex COIljGt";ate,
and n is the corresponding additive noise for such an element. This is equivalent to sayilg
that element weights affect the combined array output in a linear fashion. Letting w, s(0, w),
and n be complex vectors in CN, with the ith element of these vectors as wi, .s,(0,o), and 72,,
respectively, then another way to state the combined array response is

y(0,L) = w(s(0, w) + n) (2)

where the '*' operation represents taking the conjugate transpose (HIermitian) of the vector
w. This w is usually referred to as the weight vector. Sometimes we shall refer to the
combined array noise-free response as

S(O,W) = zuS(O,W). (3)

As for the noise component, under the assumptions above, the total noise power >i the
output can be thought of as

N

.= >adwil (4)
i=1

where,

E = diag(a, a 2 , - , aN) = E(nn'). (5)

i.e. the a's are non-negative real numbers.
Thu relationship between sensor element attributes and the combined array output is

shown in Figure 2 for a linear array of N elements. In this figure we have, on purpose, dis-
tinguished between the noise-free response of each sensor element, si in the above discussion,
and the additive noise, ni.

2.2 Problem Statement

Assume that we have an antenna array as described above and that the array is receiving
signals with potential interference or jamming Using adaptive antenna design techniques,
a certain criterion abl ut the qiiality of reception of a desired signal vrsu ; reception of the
jalnling, such as SNP, cai I opt.inizcd. Most. such lmethods reac! t . ja;,:ming by placing
a pattern null (that is a zero of the directive pattern function) at taiI: directions in which
jamming is expected. Although these solutions are optimal as far as tie optimization crite-
rion is concerned, they are quite sensitive to changes i. incident. angles aijd other deviationis
from underlying assuniptiomi .
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Signal of Interest

///0 (AOl)

n,

SN

zz3

nN

Figure 2: Combined array output as a function of the weight vector, element noise-free
responses and additive noise.
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For the deterministic weight design problem, it is assumed that desired signals are arriving
at known angles of incidence with prespecified frequencies. It is also assumed that janning
signals are arriving at predetermined angles and frequencies. The weight design problem can

be stated a- follow.

Find an antenna array (complex) weight vector that extremizes a given design
objective while satisfying certail design conistrai its on the (diriective patteli func-
tion of the array.

3 The Convex Mathematical Programming Approach

3.1 Basic Definitions

In this section, some of the basic definitions and terminology used in the remainder of
this paper will be reviewed. For a detailed discussion, the reader is advised to refer to any
standard textbook on the subject (e.g. Luenberger [Lue69, LueS4], Bazaraa and Shetty
[BS79], or Rockafeller [Roc70l).

In the ongoing argument, V is assumed to be any linear space on the real field R.

Definition 1 (Convex Set) Q C V is said to be a convex set if ltx +(I -/)y E Q whenever

x, y E Q and 0 < I < 1.

This is to say that if two points are in a convex set, then any point between them on the
line connecting the two points is also in the set. It is usually assumed that the empty set is
a convex set.

Definition 2 (Convex Function) A function f : V --+ R is a convex function on a convex
set f2 C V if f(lix + (1 - p)y) < lf(x) + (1 - s)f (y) for all x,y e-Q and 0 < p < 1.

This is to say that the line connecting two points on the graph of a convex function lies
above the graph of the function between these two points.

A convex mathematical program is the problem of finding an element in a given convex
set that minimizes the value of a certain convex function on the set. This can be stated as

minimize ( () (6)
subject to w E Q

where 4 : V -+ R is a convex function on the convex set Q C 1'. This convex function, (F, is
usually referred to as the objective function while the set Q is often referred to as the frasibh
set. Q is usually assumed to be a closed set.

Many of the results on convexity will not be mentioned here, but it should be noted that
an intersection of convex sets is convex, and that any positively weighted linear comfllbinatio

of convex functions is a convex function.
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3.2 Why Convex Programming

A general mathematical programming problem is the same as that described in 6, except
for (one of) the convexity requirements on the objective function and the set. Although this
provides a more general setup that allows formulating much more general design problems,
such as those mentioned in the introduction, yet, it is desired to maintain convexity in the
mathematical programming formulation of the problem for the reasons discussed below.

The most important feature that a convex program has is that local optimal solutions
are global optimal solutions. That is, no local solutions exist. Thus, the notion of global
optimality for a convex program is well defined. That is, it can be easily verified whether a
solution is the optimal one or not by using some of the well-known local optimality tests,
such as the Kuhn-Tucker conditions [Lue84]. This is not true for a general mathematical
program since, generally speaking, there is no quick test for global optimality of a solution
since solutions for a general mathematical programming problem can be local. Furthermore,
local optimal solutions for a general non-convex program may be arbitrarily far from the
global optimal one. Thus, it may very well be the case that starting the same algorithm
from different initial points will produce different results.

Another advantage that convex programming has over general mathematical program-
ming is the abundance of convex programming algorithms that are effective and robust. By
effectiveness it is meant that given a convex programming problem of a certain type, an
algorithm can be found that will correctly determine whether there are any feasible points.
If there are any, the optimal one will be found. On the other hand, robustness means that
an algorithm is numerically stable and will handle a wide spectrum of problems of a certain
type (e.g. linear programs) while producing results that are correct within a prespecified
numerical tolerance. Furthermore, for most classes of convex programming problems, algo-
rithms have been developed with well estimated rates of convergence. Thus, such algorithms
are guaranteed to produce results within a prespecified precision in a precalculable amount
of time.

One more useful feature of convex programs is that solution sets are convex. Thus, even
for non-differentiable convex optimization problems [Kel60, ShoS5, Akg84J, there are many
methods that will try to find the solution set by continuously refining a convex set that
contains the solution set. Many of these methods have well established (although generally
poor) rates of convergence. Many of these methods are still undergoing intensive research
which may have a promise for the future.

Finally, most algorithms which solve convex programs will produce what is known as
the Lagrange multipliers or shadow prices which resemble a solution for a dual optimiza-
tion problem. Although the main use of these multipliers within an algorithm is to verify
the optimality of the solution found, they have another interesting practical interl)retatioll.
These multipliers reflect the inherent tradeoff among objectives and constraints. That is,
the multipliers (shadow prices) tend to quantify the answer to the question
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"how much does maintaining a constraint as tight as it currently is contribute
to the value of the objective function?"

A large positive multiplier indicates that relaxing the lower bound on the related tonstraint
may significantly reduce the value of the objective function, while a large negative multipliel
indicates that the upper bound should be examined.

This is quite an important feature since in most engineering applications and otherwise,
the designer does not usually have an a priori knowledge of the exact tradeoffs among certail
design constraints and design objectives. Quantifying these tradeoffs is a valuable asset to
the designer.

3.3 The Antenna Weight Design Problem as a Convex Program
The ability to write a weight design problem as a convex mathematical program is now

investigated. In particular, we note that there is a one-to-one correspondence between vectors
of CN and vectors in R2N. For a vector w E CN can be thought of as wv + jw , where
wa, wi E IN and j = V/_1. Similarly, we can think of a vector W E g2N as T= [wT, w{]T "

That is, the first N elements of a vector in R2N can be thought of as corresponding to the
real part of a complex vector in CN, while the latter N elements can be thought of as
corresponding to the imaginary part of the complex vector. This remark permits the study
of the weight design problem as a problem on R2N, where N is the number of antenna
elements, rather than a problem on CN.

In the sequel, it will be assumed that the weight vector w E CN is written as w = w3z+jzv ,
where wK, w! E RN are called the real and imaginary components of the weight vector.
Instead of explicitly considering I,VT = [WT, WT]T as a vector in R2N, the pair wz and ma
will be considered.

The relation between wz, w! and W is a simple linear transformation of the form
= [INlOIW, and

= [ONIINIW,

where IN is the N x N identity matrix, while ON is the N x N zero matrix. Thus, a linear
function on we and w. corresponds to a linear function on W, and a convex function on wr
and wi corresponds to a convex function on IV.

With the above remarks in mind, some convex functions on the real and imaginary parts
of the weight vector are discussed next. Such functions may appear as an objective or be
used to construct constraints by setting upper and/or lower bounds. Here, it should be noted
that, to maintain convexity of the set satisfying the constraints, lower bounds can be set
only for linear functionals.

* Total noise power, P,,= l ilwil2 = v'Ezw, can be rewritten P,, = ww 3 +w-W EZw,
or P, = TN 1 ri(wW + t2). This is obviously a convex function since the individual a's
are non-negative.
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" The real and imaginary parts of a certain element weight, wi, are (obviously) linear

functions of the real and imaginary parts of the weight vector.

" The magnitude of a certain element weight, wi, is (obviously) convex in the real and

imaginary parts of the weight vector.

" Any norm of the weight vector, is (obviously) convex in the real and imaginary parts

of the weight vector.

" The real and imaginary parts of the noise-free pattern function, S(O, f), are linear in the

real and imaginary parts of the weight vector. To see this, note that S(0, f) = w's(O, f);

letting s(O, f) = s3(O, f) + js!(O, f), it becomes obvious that the real part of S is
WT sq- WTsi, while the imaginary part of S is wTs + TsK, both of which are linear.

" The array noise-free pattern gain, IS(O, f), is convex in the real and imaginary parts

of the weight vector. This can be easily seen from the fact (the previous point) that

the real and imaginary parts of S(0, f) are linear in the real and imaginary parts of

the weight vector.

" Also, sup IS(O, f)I for any fixed 0, sup JS(O, f)I for any fixed f, and Sul ) &(O.f)I
h :5f!5f2 01<_<02 01 <0<0211<1<12h

are also convex for any 01, 02, fl, and f2.

" Finally, any positively weighted linear combination of the above functions is also con-

vex.

4 The Specification Language Approach

It was shown above that many typical antenna weight design problems for a large class

of antennas can be posed as convex mathematical programs. The theoretical value of this

approach was discussed. The practicality of such a design method remains limited, as far

as the antenna weight designer is concerned, unless such a designer can specify the actual

design problem as a convex program and interpret the results efficiently. A computer aided

design approach to translating the antenna weight design problem discussed above into a

mathematical program is a most natural way for solving this dilemma.

To do this, we propose the use of an antenna weight design specification language (A 1'DSL).

The purpose of such a language is to enable the designer to fully specify the design prob-

lem in everyday engineering language and not as a convex mathematical program. Thus.

the designer can set up the design problem in a natural way by, say, setting pattern nulls.

specifying limits on the magnitude of the array response, or selecting any of the convcx

functionals mentioned above as a design objective. A specification language compiler then

translates the design problem into a convex mathematical prograin. The (hesignier need not
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know the resulting mathematical program. This is not unlike the fact that a good computer
programmer need not know anything about the machine language for the computer that is
being used without sacrificing the ability to produce correct and efficient computer programs.
This convex program can then be solved using any convex program solver. Afterwards, the
results are reported to the designer in a form similar to what was used to specify the prob-
lem. This general idea is outlined in Figure 3. Using the above outline, a description of t'he

Pattern Function Specifications (In
Antenna Weight Design
Specification Language)

COMPILER

Convex Program

CONVEX PROGRAM
SOLVER

Solution wpot, Lagrange Multipli-
ers, etc.

Figure 3: Outline of how to implement a specification language approach.

specific approach utilized in this paper, called awd [KIhrSS], is illustrated in Figure 4
Figure 5, shows how this specification language approach fits into the typical engineering

design cycle. The designer starts to design element weights for a sCusor array so as to
satisfy certain engineering design specifications. The designer may not know a priori whether
the design constraints are attainable, or it may be the case that the current specificationls
are based on earlier iterations (the dashed line in the Figure). Using the array and desigil
specifications, the designer sets up an A14DSL program and inputs it to the language compiler
resulting in a convex program. Additional information about the probleim may be available
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minimize{noise pwr; }
subject-to{
re(S(15)) == 1;/* target direction */

null(75); I* null direction */

max-magS(45,345) <= invdB(-20);

/* max. sidelobe gain */
}

COMPILER

minimize f](x)
st. g(x) < 0

CONVEX PROGRAM
SOLVER

element x-loc y-loc pwr Re(w) Im(w)
1 0.356 -0.323 1 0.00317 -0.07725

2 -0.215 -0.069 1 -0.08106 -0.00850

functional val lb ub mult status

re(S(15)) 1 1 1 0.2252

null(75) 0 0 0 -0.06837
max-mag.S(45,345) 0.1 0 0.1 -0.1346 ub

Figure 4: How awd fits in terms of the general specification language approach.
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too. The convex program is then passed to a convex program solver. Tile desigIned weiglit.s
(WopL) and certain additional information (e.g. Lagrange multipliers) will be available at the
end of this phase. If the problem is feasible, simulating the results will show whether tie%,
are implementable or not. Results of the simulation, combined with the information about
problem feasibility and the Lagrange multipliers, may serve as a tool for refining the design
and/or array specifications.

Infeasibility of the problem (under convexity) gives a clear answer to whether the desigli
specifications can be attained or not by any set of weights. If the problem is infeasible,
the answer is an unqualified "no" as was discussed earlier. This in itself is a valuable
product of the method. For if the problem is infeasible, the designer should decide, from
the additional information provided by the convex program solver, which design constraints
were the infeasible ones. Then these "violated" constraints should either be "relaxed," if this
is acceptable, or a different array be used if it is vital to maintain the original constraints.
By a different array we mean that the geometry and/or gain patterns of individual sensors
are changed. It is up to the designer to decide which action to take.

On the other hand, even with a feasible problem, the Lagrange multipliers reveal to the
designer the tradeoff between attaining certain design constraints and the increase of the
objective value. It is up to the designer to decide whether maintaining constraints as tiglt
as they are is worth the corresponding increase in the objective value. If the answer is no,
the constraints that "cost" most to maintain should be relaxed.

From the above discussion, it can be seen that the specification language approach re-
sembles a significant step towards making the convex programming approach to antenna
weight design a practical engineering tool. Using this approach, posing the problem and
interpreting the results is a task manageable by the typical antenna designer.

Of the many possible structures of an antenna weight design specification language
(AWDSL), we propose the following. The AWDSL program should contain three major
sections,

* array description,

* objective function, and

* design constraints.

The array description section is to provide all the information necessary to evaluate the
objective and constraint functionals. For instance, the number of array elements and their
geometry, operational frequency band, signal and noise covariance matrices, and element
gain patterns should be stated in this section explicitly or by giving names of files that
contain such information.

The objective section should contain design objectives. These should be convex fulictioi-
als to be minimized. Positively weighted linear combinations of convex functionals and the
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Design Array
Specifications

SArray Geometry

Element Gain Patterns

AWDSL Program
Input to Compiler
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Progrdm Additional
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(Table of Constraints, etc...
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Solution w Additional

topt Information
I I (Feasibility,

- -Lagrange Multipliers, etc...

Simulation

L J

Figure 5: Overall structure of design procedure.
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maximum possible value of a set of functional, are themselves convex, as was stated above,
and thus may be allowed.

Finally, the constraints section should contain design constraints. Lower and upper

bounds on affine functionals should be allowed. Non-affine convex functionals should have
upper bounds only.

In the following we describe our implementation of awd [KhrSS], a compiler for a small
but effective subset of AWDSL.

5 An Implementation of a Specification Language

5.1 Issues Concerning Implementation

First of all we discuss some of the issues involved in choosing and implementing the
AWDSL subset. In particular, the following closely related issues are involved in such an
implementation.

5.1.1 Underlying assumptions

In order to simplify the problem from the computational point of view, the following
assumptions are made in conjunction with those specified earlier. The compiler is to handle
only planar arrays of omnidirectional elements with fixed relative locations and negligible
mutual interactions. Elements are assumed to have constant complex gain over a predeter-
mined (finite) frequency band of operation. Signal sources are assumed to be farfield and lie
in the plane of the array.

It was decided that the finite operational frequency band of interest be selected by setting
lower (flo,,) and upper (fupper) frequencies in the array description section. Antenna element
responses are assumed to be constant over the selected band. Thus, there is no need for
storing or computing element patterns. It was also decided that all frequencies be specified
in units of a certain nominal frequency, fzoninal. Although choice of f,,,,,i,1 l is arbitrary,
a good choice is the center frequency of the antenna element operational frequency band.
A frequency of interest (f) in physical units (ttertz) is input as a normalized frequency,
f = f/fo101inal- In other words, a frequency of 0.5 specifies a frequency of half the nominal
frequency.

As usual, locations (in rectangular coordinates) of array elements must be given in units
of Anominah the wavelength corresponding to the nominal operation frequnn cy (fI,,,,m, l) and
the underlying speed of propagation (c) in the mediuin (Ai,,o,,,iili, = c/f,, iIjIL).

It is also assumed that the noise-free directive pattern function of concern to the designer
is the array space factor [RWDS4, Sch43J. This is a function of Angle of Incidence, 0,
(normalized) signal frequency, f, complex weights, w 7's, and element locations. Under the
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above assumptions, this function is given by equation 3, where in this case,

si(O, f) = exp(j27rJ(x cos 0 + yj sin 0)) (7)

where
f is the normalized (dimensionless) signal frequency,
0 is the Angle of Incidence, and
xi and yi are the x and y-locations (in units of A,,oiii,a ) of element i.

5.1.2 Language capabilities

Not all convex functionals of the real and imaginary parts of the weight vector can be
incorporated within the language without paying the price from a computational point of
view. This has to do with the fact that most efficient optimization codes exploit a certain
problem structure, such as linearity or differentiability. This, unfortunately, limits ability to
handle all types of convex objectives and constraints discussed above. Our implementation
handles design problems that can effectively be approximated by linear or quadratic pro-
grams. That is, linear constraints with linear or quadratic objectives. This choice has to do
with the fact that linear and quadratic convex programming are intensively researched fields
with good collection of robust and effective algorithms.

The following objective functionals fit the above description; that is, they can be effec-
tively approximated by linear or quadratic functionals (as will be discussed in a following
section).

0 max max IS(0,f)I, maximum value that the magnitude of the array space factor

assumes between angles 01 and 02 for any (normalized) frequency between fi and ..

* total noise power in the combined array output.

The same can be said about the following functionals that can be used to construct design
constraints.

o mnax max IS(0,f)I, same as above.
fh !5f: _f2 01 :S0 < 02

o real, imaginary, or magnitude of aS(O, f), where a is some complex weighting factor.
0 is some desired Angle of Incidence, and f is a desired (normalized) frequency.

* real, imaginary, or magnitude o1' Clwi, where o is some complex weighting factor, aild
wi is the complex weight factor for element 1.

Another design constraint can be imposed by setting S(O,f) to zero at a given Angle of
Incidence, 0, for some (normalized) frequency, f. This is termed placiug a null at 0 and f.
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5.1.3 Approximations

A magnitude constraint, such as 1wji < 6 or IS(0, f)l < b, can be viewed as a disc in
the complex plane of radius b. This disc can be arbitrarily approximated by a polygon.
In particular, such a disc may be approximated by an octagon to within ±0.34dB error.
This can be accomplished, say for ISI < b and S = SK + jS , by replacing the magnitude
constraint by the following four inequalities

7r
IS'I b CosS I < b cos-

IS S _, b VF ,os18

7rISy-S 1 b 2cos.

As for sector conditions, such as maxis I over a certain region in AOI or frequency,
the region will be sampled first, then the magnitude functional at each sampling point wvill
be approximated as above. The resolution of this sampling procedure can be left to the
program or be entered by the designer as an optional argument. Thus, a constraint of the
form max SI < b over a certain region, is approximated as IS < b for a set of points
uniformly spaced over the region. Each of these IS _K b constraints will be approximated by
four inequalities as above.

On the other hand, max [SI appearing as an objective in the form

minimize max 5'I

over a certain region in AOI and/or frequency, will be handled by introducing a new variable,
say z, and replacing the problem by the equivalent problem

minimize z
subject to max is1 5 z.

Tlhe latter constraint can be handled as above.

5.1.4 Implementation of language compiler

The question of how to implement the language compiler, from the programming point of
view, is a fundamental one. In our implementation of awd, standard UNIX, [KP84, SFS5],
utilities were used to facilitate this formidable task. In particIlaIr, h.l [LSSI], a lexical
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analyzer, and yacc, [Joh84j, a compiler compiler, were used to construct the compiler part
of awd.

As shown in Figure 6, a lexical analyzer, built using lex, will detect language lokcns anid
pass them to a parser (compiler), constructed using yacc. This parser recognizes certain
sequences of tokens. If a sequence is complete, a certain action is carried out. These actions
include creating and updating a certain internal structure called the design problem. This
design problem is actually independent of the type of optimization code used. Syntax errors
are detected at this phase.

As a second phase, the design problem is translated, using a translator written in C
language, into a convex quadratic or linear program, as appropriate. This convex program,
as expected, is fine tuned to the specific convex solver used. This is why we have included
the convex solver as an extra third phase within awd (refer to Figure 6). It should be noted
that this last phase is not a part of the language. Dependence of the compiler output (the
convex program) on the convex solver makes incorporating the solver with the compiler a
sensible thing to do.

We have also made use of the C-preprocessor (cpp) [1KR78], which is a UNIX utility
that, among other things, allows defining constants using a "#define" facility, incLaIding
external files within the source file using an "#include" facility, and permits C languagc
style comments (i.e. ignore text within --/*" and "*/"). The source prograim is passed to
c'pp before passing it to lex.

5.1.5 Choice of a convex program solver

LSSOL, [GHM*86], a convex program solver for linear, quadratic and least squares opti-
mization, from the Systems Optimization Laboratory at Stanford University, was chosen as
the convex programming code. The code is quite staule from the numerical point of view,
and is quite efficient on problems of the type encountered in the case at hand. It is the
case, as was discussed above, that most of the convex functionals encountered in the current
implementation of awd are linear, quadratic, or can be arbitrarily (as was shown earlier)
approximated by a set of quadratic or linear functionals.

Furthermore, LSSOL utilizes the active set method fGM\W81]. Thus, LSSOL's perfor-
mance is enhanced with the addition of equality constraint-. Such equality constraints (e.g.

pattern nulls) are quite common in antenna weight design practice. In addition, LSSOL
(do-s not exploit sparsity of matrices. This is actually an advantage silice tile n-LIMaliltical
programs that result from translating the design problem, typically, have full matrices.

5.2 Description of Awd

Next, we give a brief description of the implemented subset itself. In lMar icular, syntax
is si ilar to the C language. Statements are separate(d by semi-colons (') anld groups ol
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AWDSL Program

Design
Problem

Transfator

Convex
Program

Convex Program So!ver

Solution wopt

Figure 6: Our imlpleincitation of awd, a specification language comipih-r auk! solver.

VIII- 20



statements (multiple statements) are enclosed by braces (' {', }'). The input is freC format.
That is, any number of spaces, newlines, and tabs call replace a space.

Looping is allowed and takes the following form,

for var = expri to expr2 do stint
for var = expri to expr2 step expr3 do stint

Numerical constants are the same as in C. Certain constants such as 7r (3. 1.1..) it i (2.7 1S...)
are defined. Variables (which can take on only scalar floating-point values) and variable
names are allowed to assume single lower case letters only. Furthermore, most mathematical
functions (cos, sin, etc.) are defined.

Next, we shall discuss how each of the three major sections of an AWDSL, array descrip-
tion, constraint, and objective sections, was tailored to fit our implementation of awd. For
a sample awd program, the reader is advised to refer to Example 6.1.

5.2.1 The array description section

This section contains the basic information about the array structure and element behIav-
ior that allows us to compute any permissible functional. In view of the basic assumptions
underlying awd, and capabilities of the implemented language, the following informatio, is
enough.

* The number of sensor elements in the array.

* The upper and lower bounds on the normalized operational frequency band.

e The x and y locations (in rectangular coordinates) of the array elements in units of
nominal wavelength, Anominail.

* The noise power of each element.

Optionally, an initial estimate of the solution (the weights) may be given in this section.
The default starting weights are zeroes.

5.2.2 The objective section

The objective function is formed by summing all objective terms appearing in the objective
section. An objective term is of the form:

expr * 9;
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The optional (non-negative) scalar expression expr allows relative weighting of differeat
functionals. As was discussed section 5.1.2, an objective functional, y, is either the total
noise power in the array output, referred to as noise-pwr in awd, or the maximum value
that tile magnitude of the pattern function attains over a certain region, referred to as
max-magS.

5.2.3 The constraints section

This section is used to specify design constraints. As was mentioned in section 5.1.2, a
design constraint is either a null (null), or constraint functional with certain bounds on it.

Constraint functionals can be the real part, imaginary part, or the magnitude (re, im, or
mag) of an element weight (W) or the pattern function (S), or may be the maximum value
that the magnitude of the pattern function attains over a certain region (maximagS).

Functional inequalities are allowed to take the forms

g <= expr
g >= expr;
g == expr
expr l <= g <= expr2;
abs(g) <= expr ;

where g is one of the above functionals (other than those involving mag, null, and max-magS),
and expr, exprl and expr2 represent any scalar expressions.

The last form

abs(g) <= ezpr

is equivalent to

-expr <= y <= expr

The special functionals involving mag, and max-magS, can only be used in tie form

g <= expr ;

In section 5.1.3, we discussed how these constraints are approximated by linear ones.

5.2.4 Producing and reporting awd results

Once the design problem has been successfully compiled into a matlieniatical programiu,
the mathematical program is solved using LSSOL [GHM*86]. LSSOL usually ends in one of
the following results that are reported by awd,
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* found strong minimum: the unique feasible optimal weight values (w) were fouiiid.

e found weak minimum: non-unique feasible weight values (w) that minimize the objec-
tive function were found.

e solution appears to be unbounded: happens usually if the weight values (w) iII
the AWDSL program do not have explicit bounds. It is generally a symptom of an
ill-formulated design problem.

* no feasible point found: there are no weight values (w) that satisfy the constraints.
Some (or all) of the constraints in the constraints section must be relaxed.

At the conclusion, the array description, along with the final designed weights, the state
of all constraints and the final objective function value are produced and saved in a certain
file. Design constraints are printed in that file in the same order in which they were listed
in the source file.

The listing for design constraints consists of six-column lines of the form

constraint value lo-bnd upbnd lambda status.

These columns are as follows.

Column 1: description of what the functional is, such as its name, e.g. max-magS.

Column 2: the value of the functional.

Column 3: the value of the lower bound on the functional.

Column 4: the value of the upper bound on the functional.

Column 5: the value of the Lagrange multiplier for the functional.

Column 6: This field is empty if the functional is within its bounds, or the upper and lower
bounds are equal (a nonviolated equality constraint). Otherwise. it will contain one of:

" lb

" ub

* violates lb

" violates ub

according to whether the functional is at its lower or upler bound. or exceeds its lo\%,
or upper bound, respectively.

Example 6.1 contains a partial listing taken from an actual awd runi.
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6 Examples

6.1 A Linear Array of 20-Elements

In this section it is desired to find a weight vector that will satisfy the constraints exhibited
in Figure-7 for a linear array of 20 sensors equally spaced along the y-axis with 0.5A spacing.
The objective is to minimize the total noise power in the received signal. Element power is
assumed to be unity for each element.

0

-10 ........ . %•: - ::.-

-20 ... :
N

-3 0 -.. .. ... ..... ..

-40 . ... .... . c.

-5 0. .... . .. - ... "

-50

.7 0o ...... ..... ..... ...... .. ....... ........... , ........... .. ............. ........... ............... .... ............ .. ... .. .

-80

-100 -80 -60 -40 -20 0 20 40 60 80 100

Figure 7: Specifications for array pattern function design.

A possible AWDSL source file for such a problem looks as follows

/*

A linear array of 20 elements spaced at 0.5 wavelength apart along the y-axis.

/* basic definitions: */
#define TARGET -15
#define NULL -55
#define BEAM-WIDTH 10
#define NULL-WIDTH 20
#define NULL-GAIN -40
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#define SIDE-GAIN -20

array-description{

n_elements = 20; /* the number of antenna elements in the array */

for i = 0 to n-elements-1 do {
element.loc-y(i) = i*0.5 -4.75;
element-loc.x(i) = 0.0;

element-pwr(i) = 1.0;
}

minimize{

noisepwr;

}

subj ect-to

{
/* target angle TARGET as defined above */

re(S(TARGET)) >= 1;

/* a null centered at NULL degrees and of width NULL-WIDTH */
max-magS(NULL-NULLWIDTH, NULL+NULLWIDTH, 100)<= invdB(NULL_GAIN);

/* no sidelobe has gain higher than SIDE-GAIN dB */
maxmagS(-90, TARGET-BEAMWIDTH) <= invdB(SIDEGAIN);

max-magS(TARGET+BEAMWIDTH , 90) <= invdB(SIDEGAIN);
}

Awd was run on the above source file and a unique optimal weight vector was obtained.
The following plots show the resulting awd-optimal pattern and how it relates to Clesigii
constraints.

A partial listing of the awd generated output looks as follows

awd version 2.0

element x-loc y-loc noise-pwr complex weight

0 0 -4.75 1 0.02029 -0.0261412
1 0 -4.25 1 0.02168 -0.0306461

2 0 -3.75 1 0.0405 0.00488037
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Magnitude of Array Space Factor vs. Angle
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Figure 8: Awd optimal design for Example 6.1. Plot of magnitude of pattern function in
dB vs. AOL.

18 0 4.25 1 0.02168 0.0306461
19 0 4.75 1 0.02029 0.0261412

constraint value lo-bnd up.bnd lambda status
re(S(-15)) 1 1 le+10 0.1135 lb

maxmagS(-90,-25,72) 0.09612 0 0.1 -0.01418 ub
Above constraint attains bounds at:

1 -25 0.09612 -0.01418
max _magS(-5,90,106) 0.09612 0 0.1 -0.02477 ub

Above constraint attains bounds at:

1 -5 0.09612 -0.01396
1 -0.5189 0.09612 -0.008679
1 4.858 0.09612 -0.002128

found strong minimum in 998 iterations
objective function value = 0.0538599

total noise power 0.0538599
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Magnitude of Array Space Factor vs. Angle
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Figure 9: Awd optimal design for Example 6. 1. Polar plot of magnitude of pattern function
in dIB.

6.2 A Parabolic Array of 20-Elements

In this section it is desired to find a weight vector that will satisfy the constraints exhibited
in Figure-7 for the parabolic array of 20 sensors shown in Figure-10. The objective is still
minimizing the total noise power in the received signal.

In addition to the constraints illustrated in the previous example, a constraint on the
"back-of-array" gain was included. That is, the magnitude of the pattern function for signals
arriving with Angles Of Incidence between 900 and 270' was constrained. This constraint
has to do with the asymmetry of the parabolic array as opposed to the linear array. The
source file is essentially similar to that for the linear array above, and, thus, will not be
listed. It is yet interesting to note that the geometry of the array was specified by placing
the statements

for i = 0 to n-elements-1 do {
element-locy(i) = i*0.5 - 4.75;
elementloc_x(i) = (4.75-2-element-loc-y(i)-2)/4.75-2;

}

in the array-description section, and that the extra "back-of-array" constraints were added
by simply adding the line
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Plot of Normalized Element Locations for Antenna A rray
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Figure 10: A Parabolic Array of 20-Elements.

maxmag.S(90, 270) <= invdB(BACKGAIN);

to tLe constraints section of the source file. BACK-GAIN was defined to be -10dB.
Running awd on the source file for this problem, a unique optimal weight vector was

obtained. The following plots show the resulting awd-optimal pattern and how it relates to
design constraints.

6.3 S-Element Wideband Linear Array

Inh secti,: awd is used to design element weights for a linear array of 8 elements
resl)OIl(iilg to rai ,,whaid signals with known center frequencies. The elements are equally
space(l along tI(' .r-axis with a 1.8127 wavelength spacing. Using ESPRIT [RHR87], it was
,letericd Ulm that h(ere were two incident signals. One, considered the target signal, is arri ving
at an angle of -9.39 ° relative to broadside, while the other, the interfering signal, is arriving
at 1.26'.

The operational frequency band of interest for the array under consideration is frequencies
up to I.26kIhz. If we consider this frequency as the nominal frequency, the target signal will
have a normalized frequency of .75. Thus, it was determined that the array patterni should
ave at least unity gain for signals arriving from the target DOA with the target frequl(c;y.

l"urthewrimore, it was determined that uinwant..d signals due to nonlinear effects in the senvsors
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Magnitude of Array Space Factor vs. Angle
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Figure 11: Awd optimal design for Example 6.2. Plot of magnitude of pattern function in
d1B vs. AOL.

were present at frequencies significantly less than the target frequency. Thus, it was required
that any signal arriving at the DOA with a normalized frequency of less that 0.5 should
encounter at least -20dB suppression.

As for the interfering signal, it was determined that, regardless of its frequency, it should
encounter -40dB suppression. In addition, a certain band of possible directions of arrival
around the computed interference DOA should also be suppressed. This band is to be 50
wide. That is to say, for any signal arriving at 1.260 ± 50 relative to broadside, with any
frequency within the operational frequency band, the array pattern gain should be less than
-40dB.

With the above information in mind, an awd source program was written, and passed
to awd. A comparison between the results obtained by awd and those of ESPRIT is shown
in Figures 13, 14, and 15.
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Array Gain for ESPRITand AWD Optimal Copy Vectors
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1 INTRODUCTION

Awd is a computer aided design program for designing antenna element complex weights
for arbitrary arrays of omnidirectional elements with fixed relative locations and negligible
mutual interactions. Elements are assumed to have constant complex gain over a prede-
termined (finite) frequency band of operation. Currently, signal sources are assumed to be
farfield. An array configuration for the case when all elements and signals lie in a plane is
shown in Figure 1.

y
incident signal

///0

antenna array elements
* X

Figure 1: Antenna array under consideration.

Awd takes as its input an antenna weight design problem written in a specialized an-
tenna weight design specification language. Awd then compiles this problem into a convex
mathematical program. The resulting mathematical program is solved using a convex pro-
gram solver. The output of awd is a set of complex numbers, one per antenna element,
that constitutes the weight vector. These complex weights determine the relative scaling and
phase shift by which the output of each antenna element contributes to the combined array
output. This combined array output is a scalar that is the inner product of the awd designed
weight vector and the vector output of the array.
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2 DESCRIPTION

Awd is invoked as follows:

awd [-1] filename

where filename is a file that contains a specific design problem specified using an antenna
weight design specification language that is discussed below. The design problem is then
compiled into a mathematical piogram. This is the compilation phase. Note that in the
resulting mathematical program, the real and imaginary parts of an element complex weight
are considered as two independent real optimization variables.

If no errors occur in the compilation, an optimization routine is called to solve the
mathematical program. This is the optimization phase. The first step in this phase is
to determine the feasibility of the mathematical program. If the program is feasible, optimal
values of the design weights are found. The optimization code used in the current version of
awd is LSSOL [GHM*86], a library of convex programming routines for linear, quadratic,
and least squares optimization.

Upon completion, the antenna array specification, the weights designed, and the values
of the constraint functionals and their upper and lower bounds are written into the file
filename. out. The values of the design variables are written into the file filename.w if they
are optimal, or into the file filename. last. w if the optimization failed.

If the -1 option is specified, the log information from the convex program solver LSSOL
(the optimization code used) is written to the file filename. lslist. Extra options for LSSOL
may be specified in the file filk ame. lsoptn.

3 PREPARING TO USE AWD

The following information concerning the design problem is required to set up the input to
awd:

e a finite operational frequency range,

* pre-steering information,

* and, antenna element locations.

First of all, a finite operational frequency band of interest is selected by setting lower (fiowr)
and upper (fupper) frequencies. Currently, antenna element responses are assumed to be
constant over the selected band. Note that for narrowband array design problems, the lower
and upper frequencies can be equal. All frequencies are specified in units of a certain nominal
frequency, f o...a. A good choice of fnomia is the center frequency of the antenna element
operational frequency band. A frequency of interest (f) in physical units (Hertz) is input to
awd as a normalized frequency, f = f/fominal. In other words, a frequency of 0.5 specifies
a frequency of half the nominal frequency.
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If the array is pre-steered to a certain reference direction (say, azimuthal angle 0 ref, and
elevational angle Oef) for signals of a certain normalized frequency (say fref), this information
should be made available to awd.

Finally, locations (in rectangular coordinates) of the array elements must be given. The
positions are to be specified in units of Ano.,inai, the wavelength corresponding to the nominal
operation frequency (fno.nAi) and the underlying speed of propagation (c) in the medium
(An=minai : c/fnoninal).

It is assumed that the designer is concerned with the array space factor [RWD84, Sch43].
This is a function of azimuthal angle, 0, elevation angle, 0, (normalized) signal frequency,
fl 2 complex weights, Wi's, and (normalized) element location vectors, P = [x, Y, z,]m. The
function is given by:

n-1

S(O, q, f) Wi expj(k - k.f)TP, (1)
i=O

where n is the number of elements in the array,

[ sin 'rf cos OeI 1
kref - 2 rfref sin 0,ef sin Or! (2)[ cos 'krej

and
[ sin Ocos0 1

k= 27rf sin 0sin 0 . (3)
Cos 0 J

If no pre-steering information are given, krf will be assumed to be a zero vector (which is
equivalent to assuming a zero reference frequency).

The user must also specify the total noise power output pi of each element in the array
over the operational frequency band. Each pi can be thought of as the integral of the noise
power density of the i tA element over the operational frequency band. This noise can be due
to thermal, amplifier, and/or spatial noise. The total noise power in the combined array
output is given by:

n-1

N= EpilWi 2. (4)
i=0

This assumes that noises in the different array elements are independent.
Finally, the user must determine design objectives and constraints. In the current version

of awd, design objectives are allowed to be one (or a weighted sum) of the following:

e max max max IS(O,0qf), maximum value that the magnitude of the array
f1-f-<f2 0: _:502 01!50 <02
space factor assumes between azimuth angles 01 and 02, for any elevation angle be-
tween q$1 and 02, and any (normalized) frequency between f, and f 2.

'The array space factor is sometimes referred to as the array directivity pattern.
2 From now on it is assumed that all frequencies are normalized (f = f/fnominai) frequencies unless

otherwise stated.
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e total noise power in the combined array output (cf. equation (4)).

Design constraints are constructed from the following expressions:

e max max max IS(O, 0, f)1, same as above.
fh!5ff2 01I:50502 01:<5<02

e real, imaginary, or magnitude of aS(O, 4, f), where a is some complex weighting factor,
0 is some azimuthal angle, 0 is an elevation angle, and f is a (normalized) frequency.

e real, imaginary, or magnitude of aW, where a is some complex weighting factor, and

Wi is the complex weight factor for element i.

All the expressions above can be shown to be convex functionals of the real and imaginary
parts of the weight factors W's.

Another design constraint can be imposed by setting S(O, 4, f) to zero at given incident

angles, 0 and 4, for some (normalized) frequency, f. This is termed placing a null at 0, 0,
and f. It can be shown that placing a null at angles, 0 and 4, and frequency, f, is an affine

constraint on the real and imaginary parts of the weight factors Wi's.

4 THE ANTENNA WEIGHT DESIGN SPECIFICATION
LANGUAGE (AWDSL)

The Antenna Weight Design Specification Language (AWDSL) that the program awd com-

piles and runs consists of three major sections, array description, objective function, and
design constraints. Each of these sections consists, as will be detailed below, of a key word,
followed by a left brace '{', followed by a group of statements (some of which is characteristic
to the certain section), and ended by a right brace '}'.

A typical AWDSL program will look as follows:

array-description {
/* description of array geometry and element noise powers*/

}
minimize {

/* description of design objective */

}
subject-to {

/* description of design constraints */

Each of these sections is described below in full detail.

IX-5



4.1 Statement Syntax

Syntax is similar to the C language: statements are separated by semi-colons (';'), and
groups of statements are enclosed by braces ('{', '}'). The input is free format: any number
of spaces, newlines, and tabs can replace a space. Awd passes the source file filename
(which contains the AWDSL program) through the C preprocessor cpp, so all the standard
preprocessor functions are available, for example #define and #include. C-style comments
(enclosed between "/*" and "*/") are permitted. As in C, comments do not nest.

A statement can be any of the following.

* Multiple statements: as in C, a statement can be replaced by any number of state-
ments enclosed in braces ('{', '}').

* Assignment: real variables can be assigned the values of expressions. See below.

* For loop: looping takes the following forms:

for var = exprl to expr2 do stint
for var = exprl to expr2 step expr3 do strut

/* the word 'do' is synonymous to 'sum,' thus
the above can be written as: */

for var = exprl to expr2 sum strmt
for var = exprl to expr2 step expr3 sum stint

The variable var (a lower case letter) is assigned the value of expression exprl. Expr2
sets the final value of var. Expr3 sets the increment of var each time around the
loop. The default step size is 1.0. The expressions expr2 and expr3 are only evaluated
when the for loop starts. Thus, variable step sizes are not possible. For example, the
following loops execute the statement strnt 10 times:

for i = 0 to 9 dostmt
for i = 0 to 0.9 step 0.1 do stint

* Array-description statement: is used to describe the array geometry and character-
istics. Array-description statements can only appear in the array description section.
An array-description statement can be one of the following:

n-elements = expr;
lower-f req = exprl;
upper-freq = exprl;
element-loc-x(expr2) = expr3;
element loc-y (expr2) = expr3;
element-loc-z(expr2) = expr3;
elementpwr(expr2) = expr3;
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element_w(expr2) = (cxpr3, expr4);
reference = (expr5,expr6,exprT);

mag_2_lin cxpr8;

where expr is the number of antenna elements in the array, exprl is any non-negative
valued expression, expr2 represents a given element index and must evaluate to a value
between 0 and n-elements-1, and expr3 and expr4 are any real valued expressions.
Expr5, expr6, and expr7 give the azimuth, elevation and frequency information of the
reference signal for pre-steered arrays. Expr8 assumes the value of 2 or 4 depending
on whether it is wished to approximate a circle by a square or an octagon.

e Functional statement: can be either a constraint statement, which is used to specify
a design constraint in the constraints section of the source file, or an objective term,
where the optimization objective is the sum of the objective terms that are specified
in the objective section of the source file. These are explained below.

4.2 Constants, Variables and Expressions

Numerical constants are the same as in C. The mantissa can have an optional fraction part.
An exponent can be specified as 'e' or 'E', followed by an optional '+' or '-', followed by
an integer. There can be no spaces, tabs, or new-lines in a constant. "%pi" and "e" are
replaced by 7r (3.14...) and e (2.718...) respectively. Also, "infinity" is replaced by (1.0el0).
In addition, since angles in the program are assumed to be in degrees, two constants are
made available to the user. These two constants are "deg_2_rad" and "rad_2_deg," which
are replaced by (7r/180) and (180/7r) respectively.

One more constant, called "correction-factor," can only be used in the objective and
constraints sections, but not in the array description section. This constant, as will be
discussed below, has to do with the fact that awd approximates magnitude constraints, which
are quadratic in nature, by a number linear constraints. The constant "correction.f actor"

is internally set to 1/ /cos(22.5) if the magnitude constraint is to be approximated by 4 pairs

of linear constraints, and to 1/ cos(45) if the magnitude constraint is to be approximated
by 2 pairs of linear constraints.

Variables (which can take on only scalar floating-point values) are restricted to names
with one lower case letter. The variables can be assigned real numbers (doubles) and used
in scalar expressions. For example,

x I I + 2 * 5.2;
y= x + 3;

will assign 11.4 to x and 14.4 to y.

The binary operators '+', '-, '*', '/', '' (plus, minus, multiply, divide and exponentiation)
operate between two scalar expressions. They associate left to right and have the usual
precedence ('-' highest, followed by '*', '/T (equal), followed by '+', '-' (equal)). Parentheses
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can be used in the usual manner to force order of evaluation. For example, all of the following
statements assign 8.0 to the variable a.

a= 2 2 + 2 * 2;
a = 2 * (1 + 3);
a =0 .5 -3;
a= 2- 3;
a =4 / 2 * 4;

The functions sin, cos and tan return the corresponding trigonometric function values
of degree arguments. The functions asin, acos and atan return the inverse trigonometric
function values (as in the C mathematical library), except that the angles are in degrees. If
atan is called with two arguments (comma (',') separated), it will be equivalent to the C
library function atan2 (with the result converted to degrees, resulting in an answer between
-180 and 180 degrees). The functions exp, log, log10, dB, invdB, sqrt and abs return
the exponential and logarithm (base e), the logarithm (base 10), the decibel (20log10 ) and
its inverse, positive square root and absolute values of their arguments (respectively). In
addition, the functions min and max take two arguments (comma (',') separated) and return
the smaller or larger argument respectively. All of these functions take expressions which
evaluate to real scalars as arguments. Finally, floor finds the greatest integer less than the
given argument. For example, all of the following statements assign a number close to 2.0
to the variable b.

b = sqrt(4);
b = loglO(1O0);
b = 2 * min(5 * cos(le-10), exp(max(0*x,-1)));
b = floor(2.5);
w = rad.2.deg * Ypi;
b = 2 * (cos(w/4) * cos(w/4) + sin(w/4) * sin(w/4));

Expressions in awd can be used in place of a constant anywhere in the source file filename.
Thus, for example, expressions can be used for array indices (the compiler will round indices
to the nearest integer).

4.3 The Array Description Section

This section must appear first in the program. As the name suggests, this section contains
information about the array structure. The number of elements (n-elements) in the array is
the first thing to be specified. Optionally, the upper (upperflreq) and lower (lowerfreq)
bounds on the operational frequency band are specified next. If either upperflreq or
lowerflreq is not specified, it will be defaulted to unity (the nominal frequency). Thus
for narrowband elements, the user can ommit the specification of such bounds and they will
be defaulted to the nominal frequency. The array geometry is then given by specifying the
x, y, and z locations (in rectangular coordinates) of the array elements in units of nominal
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wavelength, Anomina. Finally, the noise power of each element, p; is specified. Optionally, the
initial clement weights can be specified in this section. The above information is set using
array-description statements of the form discussed above.

If the array is pre-steered to a certain direction for a given (scaled) signal frequency,
such (optional) information should also be made available. If no pre-steering information
are given, k,,f will be assumed to be a zero vector. That is, an infinite reference frequency
will be assumed. An array description section thus has the form:

array-description{
/* specify the number of antenna elements in the array */
n-elements = number of elements;

/* specify the pre-steering information */
ref erence = (reference azimuth, reference elevation, reference frequency);

/* how to approximate magnitude constraints*/

mag_2_lin = 2 for a square or 4 for an octagon;

/* specify the lower and upper bounds on operational frequency band */
lower-f req = lower bound;
upper-f req = upper bound;

/* specify the x locations */
element.xtloc(O) = x-loc of element 0;

element _x-loc(n-elements - 1) = x-loc of element n.elements-1;

/* specify the y locations */
element -y-loc(O) = y-loc of element 0;

element -y-loc(nelements - 1) = y-loc of element n-elements-1;

/* specify the z locations */
element-z-loc(O) = z-loc of element 0;

element-z-loc(n-elements - 1) = z-loc of element n-elements-1;

/* specify the element noise powers */
element-pwr(O) = power of element 0;

element-pwr(n-elements - 1) = power of clement n-elements-1;

/* specify the initial weights */
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element.w(O) = (real part , imaginary part);

element-w(n-elements - 1) = (real part , imaginary part);

Note that the array elements are indexed from 0 to n-elements-1.
The mag_2_lin (optional) value specifies to the program the method of approximating a

magnitude constraint. A value of 2 means that the magnitude constraint (which resembles
a circle) is to be approximated by two pairs of linear constraints (a square), while a value
of 4, the default, indicates that the magnitude constraints should be approximated by four
pairs of linear constraints (an octagon).

The element-w statements above allow an initial estir.iate of the solution to be given. If
awd is being re-run on a source file which has had a small number of constraints changed, it
is likely that the old optimal weight values will be a good starting point for the optimization
phase. This will speed up the optimization phase. If elementw is not specified, a zero
starting point will be used.

The user is advised to store the above coefficients in separate files that can be conveniently
included in the filefilename using the "#include" facility of the C preprocessor. For example,
if the coefficients for x-locations are in the file "problem. x," then the following should appear
in the source file:

#include "problem.x"

It should be noted that the C preprocessor (cpp) requires that the symbol '#' is the first
character on the line.

The following is a typical array description section, which describes a circular array of
ten narrowband elements:

array-description {
/* the number of elements is the first thing to declare */

n_elements = 10;

/* specify a circular array of radius equal to half wavelength */
for i = 0 to n-elements -1 do {

element-x-loc(i) = 0.5*cos(360/nelements * i);
element-y-loc(i) = 0.5*sin(360/nelements * i);
element-z-loc(i) = 0;

}

/* the other information is included in separate files *1
#include problem.p
#include problem. w

}
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The file problem.p contains the Poise power of the array elements, and the file probem.w
contains initial starting weights. Note that, as in C, to loop over two or more statements,
the statements must be enclosed by braces.

4.4 The Objective Section

This is the second section of the AWDSL program and is optional. If the objective section
is missing, awd will understand that the problem is a feasibility problem and simply try to
satisfy the constraints in the constraints section (discussed below), provided the latter section
exists. The objective function is formed by summing all the objective terms appearing in
the objective section.

An objective term is of the form:

expr * objective-functional;

The optional scalar expression expr allows relative weighting of the different functionals. The
objective-functional must be one of the following:

9 noisepwr: total noise power in the co,,iined array output (as discussed above).

* max-mag_ S(O-range) (q-range) (f-range): the maximum value that the magnitude of
the space factor assumes on certain points within the given a:;imuthal (0), elevation
(q), and frequency (f) ranges. If one of the ranges is omitted, it is replaced by a
single default value. The default value for the azimuth is 00, the value for the elevation
is 900 (parallel to the x-y plane), and the default value for the frequency range is 1
(corresponding to the nominal frequency).

Each range consists of a lower bound, upper bound, and an integer resembling the
number of points at which the given range is to be sampled. The number of interme-
diate sample points is optional. There are no default values for the lower and upper
bounds for any of the above ranges, but the value for the number of sample points
is optional and is defaulted to 100 points for the azimuth range, 56 for the elevation
range, and 10 for the frequency range. Such values are arbitrary and thus the user
should avoid using such defaults.

The following is a sample objective section which explains the use of the above functionals:

minimize {
/* total output noise */

noisepwr;

/* magnitude of space factor on a given azimuth angle range */max_mag_S(15, 345);

/* the above is equivalent to
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maxmagS(15, 345,100)()();
or

maxmagS(15, 345,100) (90) (1);

/* magnitude of space factor for given azimuthal and elevational ranges */
max-magS(-75, -30, 40)(40, 140, 40);

/* the above is equivalent to
maxmagS(-75, -30, 40)(40, 140, 40)0;

or

max-magS(-75, -30, 40)(40, 140, 40)(1);
*/

/* magnitude of space factor for given azimuthal and frequency ranges */
max-magS(75, 105, 40)()(0.8, 1.2, 20);

/* the above is equivalent to

maxmagS(75, 105, 40)(90)(0.8, 1.2, 20);

}

4.5 The Constraints Section

This section is used to specify design constraints. This is the third and final part of the pro-
gram. If no such section exists, the problem will be an unconstrained optimization problem.

The following functionals may be referred to in the constraints section:

* re(scLfctr*W(i)), im(scLfctr*W(i)), mag(scLfctr*W (i)): the real, imaginary, and
magnitude of the complex weight of element i.

* null(0, 0, f): the space factor has a null at azimuth angle 0, elevation angle 0, and
(normalized) frequency f, i.e. S(0,0,f) = 0. If f is omitted, it will be assumed to
have unity value (the nominal frequency). If q is omitted, it will be defaulted to 90 ° ,
that is a plane parallel ot the x-y one. The default for 0 is 0'.

* re(sclfclr*S(O, q, f)), im(sclfctr*S(O, q, f)), mag(sclfctr*S(O, 0, f)): tile
real, imaginary, and magnitude of the space factor with respect to incident azimuth
angle 9, elevation angle q, and (normalized) frequency f. If f is omitted, it will
be assumed to have unity value (the nominal frequency). If 4 is omitted, it will be
defaulted to 90', that is a plane parallel ot the x-y one. The default for 0 is 0'.

e max-magS(0-range) (0-rangc) (f-range): same as the functional discussed in the ob-
jcctive section.
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In the above, scL-fctr is a complex (optional) scale factor that has thc form (real part,
imaginary part). If no scale factor is given, it is assumed to be (1.0, 0.0), i.e 1.

Functional inequalities are allowed to take the forms

g <= expr;
expr >= g;
g >= expr;
expr <= g;
g == expr;
expr == g;
expri <= g <= expr2 ;
expri >= g >= expr2 ;
abs(g) <= expr
expr>= abs(g);

where g is one of the above functionals (other than those involving mag, null, and max-nag-S),
and expr, exprl and expr2 represent any scalar expressions.

The last two forms

abs(g) <= expr

and

expr>= abs(g)

are equivalent to

-expr <= g <= expr

The special functionals involving mag, and max..mag-S, can only be used in the form

g <= expr;

where expr is a non-negative valued expression.
A mag functional inequality is replaced by the four inequalities

-expr/correctionlfactor <= re <= expr/correctionlfactor;
-expr/correctionlfactor <= im <= expr/correction-factor;
-exprl correct ion-factor <= (re + im)/sqrt(2) <= expr/correctionlfactor;
-expr/correction-factor <= (re - im)/sqrt(2) <= expr/ correct ionlfactor;

where "correct ion-f actor" is a constant that is set to 1/ cos(22..5), and the above ap-

proximation yields a maximum of ±0.34 dB error if the mag2-in parameter is sct to 4 (the
default)'.'

A sample constraints section is given below:

'if* "correct ion-factor" is set to 1/, /cos(45) if mag2-lin is set to 2, and the program uses only i.hc
first two inequalities in approximating a magnitude constraint.
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subject-to {
/* bounds on W coefficients *1

for k=O to n-elements-1 do
mag(W(k)) <= 1.0;

/* a null at 90 degrees incident angle and nominal frequency */
null (90);

/* the above null can be rewritten as */
re(S(90)) == 0.0;

im(S(90)) == 0.0;

/* or it can be rewritten as

mag(S(90)) <= 0.0;

/* constrain magnitude of space factor on given azimuth and frequency ranges *I
max-magS(60, 300, 100)(90)(0.8, 1.2, 5) <= 0.1;

/* require that the array space factor has a magnitude higher
than one in the zero direction for a range of frequencies */

for f = 0.7 to 1.3 step 0.05 do
re(S(0,90,f)) >= 1.0;

}

5 OPTIMIZATION

Once the design problem has been compiled into a mathematical program, the compilation
phase is complete and the optimization phase can be executed. This is where the mathemati-
cal program is solved. Using LSSOL [GHM*861, a convex quadratic program solver from the
Systems Optimization Laboratory of the Department of Operations Research at Stanford
University, the objective function is minimized subject to the affine constraints given.

The optimization phase usually ends in one of the following results:

* found strong minimum: the unique feasible optimal weight values (W) were found.

* found weak minimum: non-unique feasible weight values (W) that minimize the ob-
jective function were found.

* solution appears to be unbounded: happens only if the weight values (W) in the
AWDSL program do not have explicit bounds. It is generally a symptom of an ill-
formulated design problem.

* no feasible point found: there are no weight values (W) that satisfy the con-
straints. Some (or all) of the constraints in the constraints section must be relaxed.
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With the first two outcomes, the optimal weight values (W), are written into the file
filename.w. This file is written in the same format as required in the array description
section. Thus, W values can be conveniently used as the starting point for the optimization
in a subsequent run of awd by placing the line

#include "filename.w"

in the array description section. This will make the optimization phase of a subsequent run
of awd run faster (if the constraints or objectives have not been changed significantly).

With the remaining outcomes of the optimization phase, the last W values are written
into the file filename. last. w instead. This allows the values to be inspected without the
result of any successful run (in filename.w) being destroyed.

Regardless of the outcome of the optimization phase, the array description, along with
the produced weights, the state of all constraints and the final objective function value are
written into the file filename.out. The constraint functionals are printed in that file in the
same order in which they were listed in the source file.

As far as the file filename.out is concerned, the constraint functionals can be divided
into two categories; those for which only one line in the file filename.out is printed, and
those with one, or more printout lines (depending on the results of the optimization).

For the first type of constraint functionals, the line is formatted into six (6) columns
separated by spaces. A description of these columns follows.

Column 1: one of the following functionals

* re(sclfctr*W(i)),

* im(scl-fctr*W(i)),

* mag(scl-fctr* W(i)),

* re(scl-fctr*S(O, 0, f)),

e im(sclfctr*S(O, 0, f)),

* mag(sclfctr*S(O, 0, f)),

* null(O, 0, f).

If 0 and/or f are not printed, it is implied that they assume the default values of 900
(the horizontal plane) and unity (the nominal frequency) respectively.

Column 2: the value of the functional.

Column 3: the value of the lower bound on the functional.

Column 4: the value of the upper bound on the functional.

Column 5: the value of the Lagrange multiplier for the funciional.
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Column 6: This field is empty if the functional is within its bounds, or the upper and lower
bounds are equal (an unviolated equality constraint). Otherwise, it will contain one
of:

* lb

* ub

* violates lb

e violates ub

according to whether the functional is at its lower or upper bound, or exceeds its lower
or upper bound, respectively.

For example, the following fragment from the constraints section of the source file filename

re(S(O)) >= 1.0;
mag(S(O)) <= 1.5;
null(270,90,0.9);

may produce the following lines in filename, out

re(S(0)) 1 1 le+10 1.04 lb
mag(S(O)) 1.082 0 1.5 0
null(270,90,0.9) 0 0 0 0

The second type of constraint functionals includes the functional max-magS (0-range) (qS-
range) (f-range). For this functional, the first line is formatted exactly as in the case above.
If the bounds are met or violated, more lines will be printed. The first extra line would be
either,

Above const. int attains bounds at:

or,

Above constraint violates bounds at:

as appropriate. The lines that follow would be five-column-printouts with:

Column 1: the azimuthal angle at which the functional attained or violated its constraints.

Column 2: the elevational angle at which the functional attained or violated its constraints.

Column 3: the (normalized) frequency at which the functional attained or violated its
constraints.

Column 4: the value of the functional at that point.

Column 5: the Lagrange multiplier of the functional at that point.
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For example, the following fragment from the constraints section of the source file filename

ma.x_mag(90,270,50)(90)(1.1) <= 0.1;

may produce the following lines in filename, out

maxmagS(90,270,50) 0.1035 0 0.1 1.87 ub
Above constraint attains bounds at:

90 90 1.1 0.1035 1.24

180 90 1.1 0.0999 0.63

It is only fair to warn the user that, due to the nature of optimization algorithms in

general, it may be the case that the algorithm did not detect all of the constraints at which
the bounds are attained. Thus, in the above example, it may be the case that the bounds
are also attained at other angles not shown above. However, all violations are detected.

6 FILE SUMMARY

Input files
filename the source file name given as argument to awd.
filename. lsoptn extra LSSOL options (optional).

Output files
filename.w W values after successful optimization.
filename, last .w W values after unsuccessful optimization.
filename, out listing file for variable and constraint values.
filename. lslist LSSOL listing if -1 option given.

7 HINTS

7.1 LSSOL Options

There are many optional parameters that the user can specify in the file filename. lsoptn,

[GHM*86]. In particular, crash tolerance and feasibility tolerance have significant
effects on the number of iterations that LSSOL takes to find the optimal solution. Thus, it
may be unwise to let the optimization phase of the program run for long periods of time,
since there may be an option that can be set in the lsoptn file to make the program run
faster on your specific problem. See the LSSOL manual for all the allowable options and
their effects on the behavior of the code.

Options in the filename.lsoptn file can be set with statenunts of the form:

# this is a sample lsoptn file

crash tolerance = 1.0e-4
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feasibility tolerance = 1.Oe-6
feasibility phase iteration limit = 100
optimality phase iteration limit = 100
print level = 5

Lines starting with the character '#' are treated as comments and are ignored.

7.2 Problem Size

The user should note that awd may generate a large number of linear constraints. Thus,
it is advisable to be economical with the size of problems handled using the code. This
limitation is due to LSSOL (see [GHM*86]).

7.3 Speed

Most of the number crunching is done in the optimization code LSSOL. LSSOL uses a
standard set of "BLAS" (Basic Linear Algebra Subroutines). Those can be freely replaced
by any appropriate BLAS fine tuned to the user's machine. In particular, by profiling the
code, we found out that most of the time is spent in two specific BLAS, "DAXPY" and
"DDOT." Running awd on the "narrowband" example shown below, it was found that
99.4% of the time was spent in solving the mathematical program, 39% of the total time was
spent in "DAXPY," and 20% of the time was spent in "DDOT."

7.4 Assuring Sensible Answers

Although awd will generate correct results for any problem of reasonable size, the designed
weights need not be sensible from an engineering point of view. Awd is just an optimization
code, and correct mathematical programming results do not necessarily imply acceptable
results. The results will be acceptable only if the problem is correctly formulated. The user
should keep in mind that a mathematical program solver like LSSOL will minimize the given
objective function subject to the given constraints. Thus, any feature of concern must be
included either as a constraint or as an objective. Otherwise, the code will not "care" about
such a feature. Ignoring some features or merely specifying a feasibility problem may very
well yield an array space factor that is not "acceptable."

7.5 Awd Error Handling

All syntax errors are caught, but the resulting error messages are sometimes hard to connect
to the actual error in the source code. No effort was made to accurately report syntax errors
or recover from them. If awd produces a long stream of syntax errors, look only at the first
one that it prints. Fix this and then re-run awd.
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8 MATLAB

PRO-MATLAB is not a requirement for using awd, but it may simplify specifying the
array structure and simulating the produced results. Thus, some supporting C-programs
and PRO-MATLAB scripts are available to the user. In the following, we will detail the
description of each of these scripts.

8.1 Transforming from PRO-MATLAB to Awd

MATLAB is a convenient tool for setting the array description. The following support
utilities are available for converting MATLAB format into ASCII format acceptable to awd.

m2awd: is a C-program that takes a character string, say "filename," as its argument,
searches for variables x, y, z, p, and w in a file called "filename.mat," and writes
whichever of these variables it finds to corresponding ASCII files called "filename.x,"
"filename. y," "filename. z," "filename.p," and "filename.w" respectively. These files
then contain the x, y, and z locations of the antenna array elements, the noise power
of the elements p, and the weight factors w written in the same format that awd
accepts in its array description section. These ASCII files can be conveniently included
in the source code of the AWDSL program using the "#include" facility of the C
preprocessor.

* mat_2_awd: is a PRO-MATLAB script that can be run while using MATLAB and it
allows the transformation from MATLAB to awd to be handled internally. This script
looks for a MATLAB ASCII variable called "file-name" whose value is, say, 'filename'.
The script then saves the x, y, z, p, and w existing variables to "filename.mat," and
runs m2awd to produce the required ASCII files.

8.2 Transforming from Awd to PRO-MATLAB

The following uLiilties for cutivci itg fru,,i awd output format to MATLAB format are also
available.

e awd2m: is a C-program that takes a character string, say "filename," as its argument,
searches for ASCII files called "filename. x," "filename. y," "filename. z," "filcname. p,"
and "filename.w." These files must contain the x, y, and z locations of the antenna
array elements, the noise power of the elements p, and the weight factors w written in
the same format that awd accepts in its array description section. It then stores the
values corresponding to whichever of these files it finds as variables x, y, z, p, and iv,
respectively, in a file called "filenamt.mat." This file can be then conveniently loaded
to MATLAB.

a awd_2_mat: is a PRO-MATLAB script that can be run while using MATLAB. This
script allows the transformation from MATLAB to awd to be handled internally.
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Dir: /usr/Prometheus/byrnes
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Figure 2: Sample layouttool window

This script looks for a MATLAB ASCII variable called "file.name" whose value is,
say, 'filename'. The script then runs the program awd2m to create a file called "file-
name.mat" that contains the x, y, z, p, and w variables. Awd-2_mat then loads the
above "filename. mat" file to MATLAB.

8.3 Graphical Layout of Array Elements

The vector handling capabilities built into Matlab provide a convenient means of specifying
regularly shaped antenna arrays (e.g., linear arrays, circular arrays, or cylindrical arrays).
However, experimentation with more irregular array shapes can be cumbersome. The fol-
lowing support utilities arc available to design antenna arrays interactively:

* layouttool: is a C-program that takes a character string, say "filename," as its argu-
ment, and searches for an ASCII file by that name. This file must contain the number
of array elements, the x, y, and z locations, the noise power p, and the weight factors
w of the antenna array elements, written in the same format that awd accepts in its
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array description section. If no input file argument is given, layouttool will start up
with an empty array. layouttool starts up a Suntools window, providing the following
functionality:

- placing new elements: click the left mouse button on a free space inside the
drawing area

- moving elements: click at an element with the left mouse button, move the mouse
to the desired location, and release the mouse button

- deleting elements: click the middle mouse button at the element to be deleted

- editing element parameters numerically click the right mouse button at the el-

ement to view a pop-up window containing the element parameters, fill in the
appropriate fields, and acknowledge by clicking the ok button

- loading an antenna array specification: fill in the dir and file fields and click the

load button

- saving an antenna array specification: fill in the dir and file fields and click the
save button

- clear all elements: click the clear button

- redraw screen (in case the display got corrupted): click the redraw button

- increase resolution: click the zoom in button

- decrease resolution: click the zoon out button

- quit layouttool: click the quit button (make sure to save the array specification

before quitting)

- scroll to the right: click at the scale to the left of the drawing area

- scroll to the left: click at the scale to the right of the drawing area

- scroll down: click at the scale at the top of the drawing area

- scroll up: click at the scale at the bottom of the drawing area

9 layout: is a PRO-MATLAB script that can be run while using MATLAB. This script
saves the Matlab variables n, x, y, z, p, and w (number of elements, x, y, z positions,
noise power, and element weights, respectively) into the file "array.mat", converts it
into an awd file "array.awd", and starts up the Iayouttool with that file as an in-

put. Upon quitting the layouttool, the layout script converts "array.awd" back into
"array.mat", and loads that file into MATLAB.

8.4 Simulating Awd Results with PRO-MATLAB

The following functions are available:
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* gels[w,x,y,z,O,0,f,kre]: is a PRO-MATLAB function that can be run while using
MATLAB. This function calculates the antenna array space factor S (as described
above) at azimuth angle 0 (in degrees), elevation angle 0 (in degrees) and (normalized)
frequency f with weight factors w and geometry described by x, y, and z. Pre-steering
information (if any) is given in kref. If this last input is omitted it will be defaulted to
zero. The result will be a complex number.

Note that 0, 4, and f can be vectors. In this case, the output of the function will be
a (complex) matrix of length(f )*length(0) rows and length(O) columns. The first
length(f) rows will contain function values obtained using the first element of 4, and
so on.

e db.plot[what,w,x,y,z,O,4,f,kref]: is a PRO-MATLAB function that can be run while
using MATLAB. This function assumes that 0 and 4 are given in degrees. The function
first calls get_s[w,x,y,z,O,0,f,krer] to calculate the antenna array space factor S.

If "what" is set to 1, f should be a scalar. If "what" is set to 2, 0 should be a scalar.
Otherwise, € should be a scalar. The function evaluates the absolute value of the S
matrix in decibels and plots it as a three-dimensional object (using PRO-MATLAB's
mesh function). If "what" is set to 1, such object will be a plot of the magnitude of the
array in decibels versus 0 and 4. If "what" is set to 2, such object will be a plot of the
magnitude of the array in decibels versus f and 4. Otherwise, the three-dimensional
object will be a plot of the magnitude of the array in decibels versus f and 0.

If one (but not both) of the vectors that should enter the 3-D plot is actually a scalar,
a two dimensional plot of the magnitude of S in decibels as a function of the remaining
vector entry will result.

The function will return the output of get-s.

e polarplot[w,x,y,z,0,qf,krer]: is a PRO-MATLAB function that can be run while using
MATLAB. This function requires that € and f be scalars. The function calls get-s to
calculate the value of the space factor S. The function then plots the magnitude of
the space factor in polar coordinates.

e polar-db-plot[w,x,y,z,0O,,f,ker]: is a PRO-MATLAB function that can be run while
using MATLAB. This function is the same as polar-plot except that the plots will be in
decibels. It should be noted here that the value of the magnitude of S, will be scaled
to overcome certain difficulties arising from the use of MATLAB.

* plot_array(x,y,z, what): is a PRO-MATLAB function that can be run while using
MATLAB. If "what" is set to 1, the function plots the projection of the array geometry
on the x-y plane. If "what" is set to 2, the the projection of the array geometry on
the x-z plane will be plotted. Finally, if "what" is set to 3, the function plots the
projection of the array geometry on the y-z plane.
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9 EXAMPLES

9.1 Linear Array of Narrowband Antenna Elements

In this section, awd is used to solve an antenna design example for a linear array of 20
narrowband elements equally spaced along the y-axis between 0 and 9.5A. The array is
assumed to lie in a plane parallel to the x - y plane at z = 2A. It is assumed that the
element noise power is unity for all elements.

The design objective is to minimize the combined array noise power. The array space
factor is to have at least a unit gain at -15 degrees, with no sidelobe gain of more than -30
dB outside a 20 degree sector centered at the target angle. It is also desired to have a -50
dB null in the 40 degree sector from -75 to -35 degrees.

A source file for such a program is as follows. Note that the (normalized) frequency index
is omitted since array elements are assumed to be narrowband.

/*

Linear array of 20 elements spaced at 0.5 wavelength along the y-axis.

/* basic definitions: */
#define TARGET -15
#define NULL -55
#define BEAM-WIDTH 20
#define NULL-WIDTH 40
#define NULL-GAIN -50
#define SIDE-GAIN -30

array-descript ion{

n-elements = 20; /* the number of antenna elements in the array */

for i = 0 to n-elements-1 do {
element-loc.x(i) = 0.0;
element-loc-y(i) = i*0.5;
element-locz(i) = 2;
element-pwr(i) = 1.0;

}

minimize{

noise.pwr;
}
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subject-to
{

/* target angle TARGET as defined above */

re(S(TARGET)) >= 1;

/* a null centered at NULL degrees and of width NULL-WIDTH *1
maxmagS(NULL-NULLWIDTH/2,NULL+NULLWIDTH/2,100) <= inv-dD(NULLGAIN);

/* no sidelobe has gain hir -r than SIDEGAIN dB */
maxmagS(-90, TARGET-BEAMWIDTH/2) <= inv-dB(SIDEGAIN);
maxmagS(TARGET+BEAMWIDTH/2, 90) <= invdB(SIDEGAIN);

}

The .out file for such a program looks as follows.

awd version 3.0

copyright Prometheus Inc. 1988

element X-loc y-loc z-loc noisepwr complex weight
0 0 0 2 1 0.01317 0.008598
1 0 0.5 2 1 0.01626 0.01105
2 0 1 2 1 -0.003668 0.02777
3 0 1.5 2 1 -0.02633 0.02438
4 0 2 2 1 -0.04747 -0.004941
5 0 2.5 2 1 -0.03337 -0.04614
6 0 3 2 1 0.01016 -0.06534
7 0 3.5 2 1 0.06185 -0.04119
8 0 4 2 1 0.07566 0.01723
9 0 4.5 2 1 0.04208 0.06901
10 0 5 2 1 -0.02257 0.07739
11 0 5.5 2 1 -0.06809 0.03611
12 0 6 2 1 -0.06931 -0.02297
13 0 6.5 2 1 -0.02624 -0.06
14 0 7 2 1 0.02151 -0.05211
15 0 7.5 2 1 0.04692 -0.01678
16 0 8 2 1 0.03172 0.01725
17 0 8.5 2 1 0.008442 0.02679
18 0 9 2 1 -0.01457 0.01529
19 0 9.5 2 1 -0.01105 0.01084

constraint value lo-bnd up-bnd lambda status
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re(S(-15)) 1 1 le+10 0.1296 lb

maxmagS(-75,-35,100)(90)(1) 0.00329 0 0.003162 -0.5443 ub

Above constraint attains bounds at:

-69.4 90 1 0.003217 -0.02565

-68.6 90 1 0.003241 -0.009777

-59.8 90 1 0.003071 -0.03465

-59.4 90 1 0.003122 -0.02704

-51.4 90 1 0.003173 -0.07514

-50.6 90 1 0.003138 -0.01113

-44.6 90 1 0.003107 -0.09142

-43.8 90 1 0.003176 -0.0215

-38.6 90 1 0.003175 -0.1272

-38.2 90 1 0.003228 -0.01943

-35 90 1 0.00329 -0.-014
max magS(-90,-25,100)(90)(1) 0.03272 0 0.03162 -0.03585 ub

Above constraint attains bounds at:

-27.6 90 1 0.03046 -0.01309

-26.95 90 1 0.03272 -0.005512

-26.3 90 1 0.03042 -0.01725

max-magS(-5,90,100)(90)(1) 0.0329 0 0.03162 -0.1475 ub

Above constraint attains bounds at:

-5 90 1 0.03054 -0.006633

-4.05 90 1 0.03224 -0.0285

-0.25 90 1 0.03176 -0.01261

0.7 90 1 0.03113 -0.01891

5.45 90 1 0.0329 -0.02123

11.15 90 1 0.03171 -0.01002

12.1 90 1 0.0304 -0.002987

16.85 90 1 0.03081 -0.00645

17.8 90 1 0.0325 -0.00292

23.5 90 1 0.03077 -0.006671

30.15 90 1 0.03079 -0.004516

31.1 90 1 0.03134 -0.0007145

37.75 90 1 0.03052 -0.004529

46.3 90 1 0.03211 -0.003496

47.25 90 1 0.03065 -0.001102

55.8 90 1 0.03109 -0.00217

57.7 90 1 0.03041 -0.003682

71.95 90 1 0.03047 -0.005647

72.9 90 1 0.03049 -0.004698

found strong minimum in 751 iterations

objective function value = 0.061177
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total noise power = 0.0611725

The next three graphs contain plots of the array geometry, the magnitude of the array
space factor in polar coordinates and the magnitude of the array space facto, in dB versus
the incident angle The resulting main lobe 3 dB beam width is 70.

Plot of Normalized Element Locations for Antenna Array
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Figure 3: PRO-MATLAB plot of array element locations for example 9.1.

9.2 Linear Array of Wideband Antenna Elements

In this section, awd is used to solve an antenna design example for a linear array of 20
wideband elements equally spaced along the y-axis between 0 and 9.5A. The elements lie in
a plane parallel to the x - y plane at z = 0.5A. Taking the nominal frequency as the center
frequency, the (normalized) frequency band of operation is assumed to be [0.9, 1.1]. It is
assumed that the element noise power is unity for all elements.

The design objective is to minimize the combined array noise power. Signals of concern
are those that lie in the plane of the array. The array space factor is to have at least unit
gain at all band frequencies in the -15 degrees direction, with no sidelobe gain (at any
frequency) of more than -20 dB outside a 20 degree sector centered at the target angle. It
is also desired to have a -40 dB null in the 40 degree sector from -75 to -35 degrees for all
frequencies.

A source file for such a program is as follows.
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Magnitude of Array Space Factor vs. Angle
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Figure 4: PRO-MATILAB polar plot of magnitude of array space factor for example 9.1.
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Linear array of 20 elements spaced at 0.5 wavelength along the y-axis.
*/

/* basic definitions: */
#define TARGET -15 /* target direction */
#define NULL -55 /* null direction */
#define BEAMW 20 /* beam width *1
#define NULLW 40 /* null sector width */
#define NULLG -40 /* null gain */
#define SIDEG -20 /* side lobe gain */
#define LFREQ 0.9 /* lower frequency */
#define UFREQ 1.1 /* upper frequency */

arraydescription{

n-elements = 20; /* the number of antenna elements in the array */

lower-freq = LFREQ; /* lower bound on operational frequency band */
upper-freq = UFREQ; /* upper bound on operational frequency band */

for i = 0 to n-elements-I do
element-loc-x(i) = 0.0;

elementlocy(i) = i*0.5;
elementloc.z(i) = 0.5;
element.pwr(i) = 1.0;

}

minimize{

noise-pwr;

}

subj ect-to

{
/* at least unit gain for all frequencies at angle TARGET */

for f = lower-freq to upperfreq step 0.02 do
re(S(TARGET,,f)) >= 1;

/* a null centered at NULL degrees and of width NULLW for all frequencies*/
maxmagS(NULL-NULL_W/2,NULL+NULLW/2,20)()(lower-freq,upper_freq, 10)

<= inv-dB(NULLG);
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/* no sidelobe has gain higher than SIDEG dB for any frequency */
maxmagS(-90, TARGET-BEAMW/2, 40)()(lower.freq,upper.freq, 10)

<= inv-dB(SIDEG);

maxmagS(TARGET+BEAMW/2, 90, 40)()(lowerfreq,upper-freq,10)

<= inv-dB(SIDEG);

The resulting .out file for the above source program looks as follows.

awd version 3.0
copyright Prometheus Inc. 1988

element X-loc y-loc z-loc noise-pwr complex weight
0 0 0 0.5 1 0.02534 0.04824
1 0 0.5 0.5 1 0.04649 0.0596
2 0 1 0.5 1 -0.01651 0.05755
3 0 1.5 0.5 1 -0.06919 0.04503
4 0 2 0.5 1 -0.08411 -0.02889
5 0 2.5 0.5 1 -0.04948 -0.08397
6 0 3 0.5 1 0.03232 -0.09897
7 0 3.5 0.5 1 0.08869 -0.05132
8 0 4 0.5 1 0.1017 0.02769
9 0 4.5 0.5 1 0.05035 0.08539
10 0 5 0.5 1 -0.0223 0.09507
11 0 5.5 0.5 1 -0.0767 0.04564
12 0 6 0.5 1 -0.07906 -0.01906
13 0 6.5 0.5 1 -0.03457 -0.06201
14 0 7 0.5 1 0.01689 -0.05426
15 0 7.5 0.5 1 0.04123 -0.01935
16 0 8 0.5 1 0.03069 0.01361
17 0 8.5 0.5 1 0.008726 0.0176
18 0 9 0.5 1 -0.01201 0.01062
19 0 9.5 0.5 1 -0.007842 0.00767

constraint value lo-bnd up-bnd lambda status
re(S(-15,90,0.9)) 1 1 le+10 0.1168 lb
re(S(-15,90,0.92)) 1.121 1 le+10 0
re(S(-15,90,0.94)) 1.22 1 le+10 0
re(S(-15,90,0.96)) 1.293 1 le+10 0
re(S(-15,90,0.98)) 1.338 1 le+10 0
re(S(-15)) 1.352 1 le+10 0
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re(S(-15,90,1.02)) 1.336 1 le+10 0

re(S(-15,90,1.04)) 1.289 1 le+10 0
re(S(-15,90,1.06)) 1.216 1 le+10 0

re(S(-15,90,1.08)) 1.118 1 le+10 0
re(S(-15,90,1.1)) 1 1 le+10 0.1533 lb
max.magS(-75,-35,20)(90)(0.9,1.1,10) 0.0104 0 0.01 -0.7577 ub

Above constraint attains bounds at:
-73 90 0.9 0.01037 -0.01158
-37 90 0.9 0.01034 -0.07331
-35 90 0.9 0.01006 -0.06621
-35 90 0.92 0.009767 -0.03517
-67 90 0.94 0.01038 -0.06528
-53 90 0.96 0.009714 -0.05736
-39 90 0.96 0.0104 -0.07326

-45 90 0.98 0.009965 -0.04545
-49 90 1.02 0.009718 -0.03688
-65 90 1.04 0.009613 -0.07113

-73 90 1.06 0.009742 -0.04784
-35 90 1.06 0.0104 -0.06974
-71 90 1.08 0.009749 -0.008774
-75 90 1.1 0.0104 -0.02528
-39 90 1.1 0.009966 -0.07045

maxmagS(-90,-25,40)(90)(0.9,1.1,10) 0.104 0 0.1 -0.267 ub

Above constraint attains bounds at:
-25 90 0.9 0.104 -0.1223

-28.25 90 0.92 0.09642 -0.1448
max-magS(-5,90,40)(90)(0.9,1.1,10) 0.103 0 0.1 -0.07177 ub

Above constraint attains bounds at:
-5 90 0.9 0.103 -0.01779

6.875 90 0.9 0.09613 -0.002469
18.75 90 0.94 0.09612 -0.001434
-0.25 90 0.96 0.09653 -0.007831
11.63 90 0.98 0.09614 -0.00393

-5 90 1.1 0.09781 -0.02107

-0.25 90 1.1 0.09653 -0.01062
4.5 90 1.1 0.09654 -0.006615

found strong minimum in 1319 iterations
objective function value = 0.115121
total noise power = 0.115121

Figure 5 shows the magnitude of the array space factor (in dB) as a function of the
(normalized) frequency and the incident angle (in degrees).
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Magnitude of Array Space Factor (dB) vs. Angle and Scaled Frequency

Figure 6: 3-dimensional PRO-MATLAB plot of magnitude of array space factor in dB for
example 9.2.

9.3 Cylindrical Array of Narrowband Elements

In this example we show how awd can be used to design weights for a 3-D array with
narrowband elements. We assume that we have a cylindrical array of 80 elements. Cylinder
height is 4A and its principal axis is the x-axis. The radius of the cylinder is A. The sensors
are grouped in circles of 10 elements each. Circles lie in the y-z plane and are spaced 0.5A
a. t along the x-axis. Elements are spaced uniformly on each circle. The following two
figures (Fig. 6 and Fig. 7) illustrate the geometry of this array.

Target signals arrive with an azimuthal AOA of 15' and an elevation of 1000 (i.e. 10'
below the x-y plane). It is desired to constrain all sidelobes outside an azimuthal band of
width 50' and an elevation band of width 150 centered around the target directions. Sidelobes
gains are to be below -12dB.

A possible awd source file for such a problem is as follows.

/*

A cylindrical array of 80 elements.

#define NXELT 8
#define NRADIALELT 10
#define HEIGHT 4
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Projection or Antenna Array in the X-Y plane
IF T

0.8 ----- *-- *-*-*-*----*-**-.............--*---- .......... i.... ..........

0.4

-0.2

-0 . 8 --- - - ... ... ... ... ..

0 . . 2 2 . 3 3.

X-axis

Figure 7: Output of plot-array: PRO-MATLAII plot of array element location projected on
the x-y plane for examp~le 9.3.

#define SIDE-GAIN -12
#define B-WIDTH-.A 50
#define B-.WIDTH-.E 15

#define TARGET-A 15
#define TARGET-E 100

#define N-.AZIM 140
#define N-.ELEV 25

array-descript ion{

n..elements = 80; /* the number of antenna elements in the array *
mag_.2lin=2;

for i=Oto NX-ELT- 1ldo {
x = i*HEIGHT/NXELT;
k = j*N-RADIAL-ELT;
for j= 0 to N..3ADIALELT-1 do {

IX-32



Projection or Antenna Array In the Y-Z plane

0.8 - 1 I .-................. 4- ...- I...... 

0.64.........----

0.2

-0.2 ----

-O ....... ...

-0.8

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0 .4 0.6 0i I

y-axis

Figure 8: Output of plot-array: PRO-MATLAB plot of array clement location projected on
the y-z plane for example 9.3.

t = j*360/N-RADIAL-ELT;
element-.pwr(k) = 1.0;
element-loc-x(k) = x

element-.loc-.y(k) = cos(t);
element-loc-.z(k) = sin(t);
k = k+1;

#include "feli .w"

minimize{
noise-pwr;

I

subj ect-to

f
/* at least unity gain for target direction *

re(S(TARGET-A, TARGET_.E)) == 1;
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/* constrain every sidelobe outside a sector of band widths
BWIDTHA for azimuth and BWIDTHE for elevation */

maxmag_ S (TARGET_A+B_WIDTHA/2,TARGETA+360-BWIDTHA/2,NAZIM)
(0,TARGETE-BWIDTHE/2,NELEV) <= invdB(SIDEGAIN);

maxmag_S (TARGET_A+B_WIDTHA/2,TARGET_A+360-B_WIDTH_A/2, N_AZIM)
(TARGETE+BWIDTHE/2,180,NELEV) <= invdB(SIDEGAIN);

/* help the optimization code by setting some (reasonable) nulls */
for a=105 to 285 step 20 do {

for t = 0 to 60 step 30 do

null(a,t);
for t = 140 to 180 step 20 do

null(a,t);

}

Plots of the awd designed array space factor follows in Fig. 8 and Fig. 9.

Plot of Mag(S) vs. Azimuthal and Elevational AOI

E le v a tio nA 
z m t

Figure 9: 3-dimensional PRO-MATLAB plot of magnitude of array space factor for example
9.3
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___, Professional Consultants To The Scientific Community

0

INC. February 1, 1989

Mr. Benjamin Cray
Code 2133
NUSC
New London, CT 06320

Dear Ben,

Enclosed are the results we discussed over the phone yesterday. Figure I indicates that I was able
to reproduce your results. Based on the back-lobe presence, some of the AWD results shown minimized

max IS(Of)J over the region [-167.5° , -12.5 °] U [12.50, 167.50]. It should be obvious from the AWD plots
when this was done. The mesh plot in Figure 2 was a complex weight design with fo = 17011z. Figures 3a
and 3b show the results of optimizing over 4 frequency intervals as indicated. Interestingly, the design at
the highest frequency interval was significantly poorer than the others. I don't have a real good intuitive
explanation for this other than to note that the pre-steering was done at 240Iz for all 4 designs. I am

currently working on designs where the steering is done at the mid-point of each interval. The results will

follow as they become available.

Note well that the plots over frequency ranges are plots of

m

S(O, f) = i wej(k 8J) 
-  (

8o
° o)) T z.,

t=l

where m = 34 and 00 = 00 for the cases shown, and fo is indicated in the figures. This implicitly assumes
the analytic or complex signal is available (e.g. via Hilbert transform). If, as I am guessing, the current
processor configuration simply delays the real received signal by To/4 where To = i/to to gc,,crate the
quadrature component, the plots contained herein will bear little (or no) resemblance to those you may

have generated with your simulation program that correctly models the processor structure. A simple delay
generates the quadrature component for only a single frequency component of the received signal. The

overall consequence of such a processing strategy is to create a frequency dependent array manifold from a
frequency independent one. Since AWD is not currently capable of handling frequency dependent response
functions yet, ...

Hope this helps. Please let me know how it is received at NUSC. Also, I'd appreciate finding out who
to contact about the upcoming experiment at Seneca Lake.

Sincerly,

Richard Roy,
Senior Scientist

end: AWD results for 34 element horseshoe array weight design

21 Arnold Avenue • Newport, RI. 02840 • 401-849-53-9/617-784-2355
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Professional Consultants To The Scientific Community

0
INC. February 2, 1989

Mr. Benjamin Cray
Code 2133
NUSC
New London, CT 06320

re: AWD and the horseshoe array

Dear Ben,

... and here are the results for centered design over the four bands. Note the improvement! Again the

results assume the analytic signal is available over the band.

More as it becomes available,

Richard Roy,
Senior Scientist

end: more AWD results for 34 element horseshoe array

21 Arnold Avenue • Newport RI. 02840 • 401-849-5389/617-784-2355
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NUSC Optimal Array Weight Design - 34 Element Horseshoe Array
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NUSC Optimal Array Gain - Design Frequency 170 Hz
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AWD Optimal Array Gain - NUSO 34 Element Array
0

NUS~des Real Weight Constraint
-2 3 EleentsArray- P re-steered, to 00
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AWD Optimal Array Gain Pattern - NUSO Horseshoe Array
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AWD Optimal Array Gain - 34 Element NUSO Array
10 
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AWD Optimal Array Gain - 34 Element NUSO Array
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AWD Optimal Array Gain - 34 Element NUSO Array

Real horseshoeL2 fmin =2bOHz

34 Elements fmax,= 240Hz
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AWD Optimal Array Gain - 34 Element NUSC Array

RealhorseshoeL2 Real Weight Constraint
34 Elements Array Pre-steered to 0°

c = 4850 ft/sec
fo = 240 Hz
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PART I THE SCHEDULE

SECTION B - SUPPLIES OR SERVICES AND PRICES/COSTS

0001 RESEARCH

The contractor shall furnish the level of effort specified in Section F,
together with all related services, facilities, supplies and materials needed
to conduct the research and prepare the reports described below. The researAh
shall be conducted and reports delivered in accordance with Section F.

000IAA

1. Develop the Direct Adaptive Antenna System, incorporating analytic null
steering methods drived during Phase I into existing adaptive algorithms.

2. Produce notch filters with more that one notch, similar to Ideal
single-notch filters developed in Phase I.

3. Construct and code wavelets (harmonics) for high frequency high resolution
expansion of signal arising in time-varying environments.

4. Develop a convex programming approach to the problem of choosing antenna
array weights.

5. Consider the development of an alternative to the Cox efficiency
constraint for reducing the effect of shading coefficient errors.

6. Design and build a prototype compiler which will translate specifications
stated in a natural language for antenna engineers (PSL) into executable code
In the form of a convex program or an appropriate linear program.

7. Develop a Problem Scenario Generator to produce inputs to the executable
code generated by the complier. This will include a Signal Generator and
Operators capable of combining various signals.

8. Develop an Antenna Data Analyzer to generate plots illustrating the output
of the executable code.

9. Develop a user Interface to enable the above components to be employed In
an iterative and interactive manner.

10. Expand upon the new peak factor results obtained in Phase I by
considering the general problem of determining, for a given amplitude
spectrum, how to choose the phases of Fourier coefficients in order to
minimize the peak factor in the corresponding Inverse Fourier transform.

Page 2 of 16 Pages Prometheus, Inc.
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Contract #F49620-88-C-0028
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Benedetto, John J., Ph.D. in Mathematics, University of Toronto, 1964.
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1. University of Montreal, Otober-December, 1989 (10 lectures)

2. University of New South Wales, February, 1990 (2 lectures)

3. George Mason University, March, 1990

4. University of Paris, Orsay, April, 1990

5. University of Pisa, May, 1990

6. University of Calabria, May, 1990

7. ETlt-Zurich, May, 1990
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Pronmtheus Publications
Contract #F49620-88-C-0028

1. J.S. Byrnes, The Minimax Optimization of an Antenna Array Employing Restricted Coefficients,
Scientia, 1 (1988), 25-28.

2. J.S. Byrnes and D.J. Newman, Null Steering Employing Polynomials with Restricted Coefficients
IEEE Transactions on Antennas and Propagation, 36-2 (1988), 301-303.

3. J.S. Byrnes, A Notch Filter Employing Coefficients of Equal Magnitude, IEEE Transactions on
Acoustics, Speech, and Signal Processing, 36-11 (1988), 1783-1784.
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Coefficients, Proceedings of the American Mathematical Society 109-1 (1990) 113-116.
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8. J.S. Byrnes, Problems on Polynomials with Restricted Coefficients Arising from Questions in Antenna
Theory, Proc. of the 1989 NATO Advanced Study Institute on Fourier Analysis and its Applications, (1990)
(to appear).

9. J.J. Benedetto, A Multidimensional Wiener-Wintner Theorem and Spectrum Estimation, Transac-
tions of the American Mathematical Society, (1990), (to appear).

10. Nasser Khraishi, Richard Roy and Stephen Boyd, A Specification Language Approach to Solving
Convex Antenna Weight Design Problems, (to be submitted).

11. i.J. Benedetto, Ileisenberg Wavelets and the Uncertainty Principle, (to be submitted).

12. J.S. Byrnes, An Ideal Omnidirectional Transmitting Array, and Optimal Peak Factor Array, for
Less Than Half-wavelength Spacing, (to be submitted).
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